Skip to main content

Web Content Display Web Content Display

Skip banner

Web Content Display Web Content Display

Department of Medical Biotechnology

Prof. dr hab Józef Dulak, professor
room: B121 (3.0.25), phone: +48 12 664 63 75, e-mail:

Prof. dr hab. Alicja Józkowicz , professor
room: B103 (3.0.35), phone: +48 12 664 64 11, e-mail:

Dr hab. Agnieszka Łoboda, associate professor
room 1.01.4,, phone: +48 12 664 64 12, e-mail:

Dr hab. Agnieszka Jaźwa-Kusior, associate professor
room 1.01.4, phone: +48 12 664 64 12, e-mail:

Dr hab. Anna Grochot-Przęczek, associate professor​
room: 1.01.3,  phone: +48 12 664 60 24, e-mail:

Dr hab. Monika Biniecka, assistant professor
room 1.01.4, phone: +48 12 664 64 12, e-mail:  

Dr Urszula Florczyk-Soluch, assistant professor 
room: 1.01.3, phone: +48 12 664 63 98, e-mail: 

Dr inż. Kinga Gawlińska, assistant professor 
room: 1.01.3, phone: 12 664 60 24, e-mail: 

Dr Witold Nowak, assistant professor
room: 1.01.3, phone: +48 12 664 60 24, e-mail:

Dr Jacek Stępniewski, assistant professor 
room: 1.01.3, phone: +48 12 664 63 98, e-mail:

Dr Agata Szade, assistant professor 
room: 1.01.3, phone: +48 12 664 60 24, e-mail:

Dr Wojciech Krzeptowski, assistant professor
room: 1.01.3, phone: +48 12 664 63 98, e-mail:

Dr Tomasz Zieliński, assistant professor
room: 1.01.3, telefon: 12 664 60 24, e-mail:

Dr Aleksandra Bednarz
room: B017 (3.01.7), phone: 12 664 63 98 email:

Mgr Agnieszka Andrychowicz-Róg, senior specialist 
room: B104 (3.0.34), phone: +48 12 664 61 36, e-mail:  

Mgr Joanna Uchto-Bajołek, senior specialist
room: B104 (3.0.34), phone: +48 12 664 61 36, e-mail:

Mgr Joanna Strzęp-Knapiak, Lab manager
room: 3.0.6 , phone: 12 664 64 06, e-mail:
Mgr Marta Białobrzeska, Lab manager
room: 3.0.2, phone: 12 664 64 06, email:
Mgr Aleksandra Oleksy, Lab manager
room: 3.0.6 , phone: 12 664 64 06, e-mail:

Mgr inż Paweł Kożuch
room: B017 (3.01.7), phone: 12 664 63 98, e-mail:

Mgr Grzegorz Sokołowski
room: 1.01.3, phone: 12 664 60 24, e-mail:

room: B017 (3.01.7), phone: + 48 12 664 63 98 
  • Patrycja Adamska
  • Gabriela Burda
  • Patryk Chudy
  • Eda Dev
  • Jadwiga Filipek-Gorzała
  • Małgorzata Myszka
  • Marta Przymuszała
  • Izabella Sambak
  • Katarzyna Sarad
  • Izabella Skulimowska
  • Jan Wolnik

  • Stem cell biology – mechanisms of cellular reprogramming and differentiation: 1. Mechanisms of differentiation of induced pluripotent stem cells into cardiomyocytes, endothelial cells and skeletal muscle cells; 2. Satellite cells differentiation; 3. Hematopoietic stem cell differentiation; 4. Mobilization of cells from the bone marrow to the blood
  • Molecular mechanisms of Duchenne muscular dystrophy – regeneration and vascularisation of skeletal and cardiac muscles
  • Vascular biology: molecular mechanisms of angiogenesis and function of endothelial cells
  • Mechanisms of myocardial damage and regeneration
  • Medical biotechnology: gene and cell therapy in modulation of neovascularization, heart and muscle regeneration
  • The role of heme oxygenase-1 (HO-1), Nrf2 and microRNAs in cardiovascular system, skeletal muscles, kidney and cancers
  • Cancer biology and anti-cancer therapy: mechanisms of tumor initiation, growth, metastasis and resistance to therapy
  • Role of hypoxia, antioxidant genes and microRNAs in regulation of gene expression.

Selected techniques

  • Flow cytometry & cell sorting
  • Induced pluripotent stem cells (iPSCs) technology
  • Molecular in vivo imaging
  • Gene editing by CRISPR/Cas
  • siRNA, shRNA & microRNAs technology
  • Angiogenic assays in vitro: tube formation on Matrigel, aortic ring assay, spheroid assay
  • In vivo models: hind limb ischemia, wound healing, tumor inoculation, chemical carcinogenesis, mouse model of myocardial infarction
  • Gene cloning, construction of plasmids and viral vectors: retroviral, lentiviral, adenoviral, AAV
  • Regulated gene expression: hypoxia-induced and tetracycline-induced expression systems, establishing of stably-transfected cell lines
  • Isolation and culture of primary cells: satellite cells, hematopoietic stem cells, mesenchymal stromal cells, endothelial cells, renal proximal epithelial cells.

Animal models, kept in modern animal facility (SPF – specific pathogen free)

  • miR-378a knockout mice
  • mdx mice (dystrophin knockout)
  • HO-1 knockout mice
  • HO-1 knockout GFP mice
  • HO-1 floxed mice (knockout and knockin)
  • Nrf2 transcriptional knockout mice
  • hyperglycaemic mice (db/db)
  • Cre-recombinase expressing mice (Cdh5-Cre, Cdh5-CreER, Hoxb5-CreER; Pax7-CreER)
  • NSG-SGM3 mice
  • Hoxb5-mCherry mice
  • miR-34a floxed mice
  • Neo1 floxed mice
  • Nrf2 floxed mice

Specialized equipment

Modern animal facility operating in SPF standard, houses several strains of knockout and transgenic mice and rats, kept in individually ventilated cages (IVC). The facility is equipped in:

  • Vevo F2 (VisualSonics) ultrasonograph
  • IVIS© Lumina II (Caliper Life Science) – imaging system for both fluorescent and bioluminescent imaging in vivo
  • Exer 3/6 (Columbus Instruments) – animal treadmill for mice and rats
  • scil Vet abc (Horiba) – hematological and biochemical analyzer (for analyzing blood of various animal species)
  • Aurora1300A: 3-in-1 Whole Animal System (Aurora Scientific) – system for the measurement of rodent muscle properties in situ, in vivo and in vitro
  • Micromanipulator
  • Grip Strength Meter (Ugo Basile) – a system for determining the gripping strength (the maximum force) of small laboratory animals (rat, mouse)
  • scil Vet abc – hematology analyzer (different animal species can be analyzed)
  • SPOTCHEM EZ SP-4430 (Arkray) – automated analyzer for clinical chemistry
  • IBIDI Pump system -organ-on-a-chip equipment.

Flow cytometry laboratory, equipped in:

  • BD LSRFortessa flow cytometer
  • MoFloTMXDP (Beckman Coulter) high-speed cell sort

Histological laboratory, equipped in:

  • Automated tissue processor
  • Automated tissue embedding system
  • Microtome with the Section-Transfer-System
  • Cryostat
  • Automated staining system for paraffin sections
  • Laser Microdissection LMD7000 (Leica).

Other equipment:

  • Chambers for hypoxic conditions/hypoxic incubators/hypoxic laminar for cells culturing in low oxygen concentration
  • Bioanalyzer 2100 (Agilent) for checking the RNA integrity
  • Real-time PCR StepOnePlus (Applied Biosystem) for analysis of a gene expression profile on mRNA level, as well as microRNAs analysis
  • Multiwell-MEA-System – measurement of electrophysiological activity of cells
  • TissueLyser II – mechanical tissue grinding
  • Automatic wire myograph system 630MA enabling examination of the vascular function of any vessel segment
  • ChemiDoc Imaging Systems for fast and sensitive detection of the chemiluminescent signal in western blots.

  1. Agnieszka Jaźwa-Kusior: In search for novel markers of senescence and causes of senescent cells accumulation in atherosclerotic plaque. The National Science Centre, OPUS grant, 2022–2026.  
  2. Anna Grochot-Przęczek: Keap1-dependent proteopathy as a unifying mechanism of vascular dysfunction. The National Science Centre, OPUS grant, 2022–2026.
  3. Józef Dulak: Enhancement of heart repair after myocardial infarction by means of genetically improved cardiomyocytes and endothelial cells differentiated from induced pluripotent stem cells, The National Science Centre SHENG grant, 2022–2025
  4. Patryk Chudy: Oxidative, hemolytic or genotoxic stress – which one triggers a type I interferon response in heme oxygenase-1 deficient cells? The National Science Centre, PRELUDIUM grant, 2022–2025
  5. Agata Szade: Development of the new strategy for the mobilization of bone marrow cells to the blood for the treatment of hematopoietic disorders. The National Centre for Research and Development, LIDER grant, 2021–2024.
  6. Agnieszka Łoboda: Novel insights into hydrogen sulfide-mediated cytoprotection – can H2S prevent the progression of Duchenne muscular dystrophy? The National Science Centre, OPUS grant, 2020–2024. 
  7. Agata Szade: Cellular and molecular mechanisms driving the expression of mobilizing cy-tokines. The National Science Centre, SONATA grant, 2020–2023.
  8. Witold Nowak: Heme metabolism in blood vessel wall – the influence on abdominal aortic aneurysm formation. The National Science Centre, SONATA grant, 2020–2023. 
  9. Józef Dulak: Molecular mechanisms of heart failure in Duchenne and Becker muscular dystrophy. The National Science Centre, MAESTRO grant, 2019–2024.  
  10. Alicja Józkowicz: Endothelial cells in the composition of hematopoietic niche: the versa-tile choir or specialized soloists? The National Science Centre, MAESTRO grant, 2019–2024
  11. Monika Biniecka: Mechanistic links between psoriasis and cardiovascular complications: investigation on inflammation induced alterations in induced pluripotent stem cells-derived endothelial cells cardiomyocytes and cardiac organoids. The National Science Centre, SONATA grant, 2019–2024.
  12. Monika Biniecka: Mechanisms of cardiovascular complications in rheumatoid arthritis patients: induced pluripotent stem cell-derived cardiomyocytes as an experimental model. The National Science Centre, OPUS grant, 2018–2025.

  1. Dysregulated iron homeostasis in dystrophin-deficient cardiomyocytes: correction by gene editing and pharmacological treatment, K. Andrysiak, G. Machaj, D. Priesmann, O. Woznicka, A. Martyniak, G. Ylla, M.  Krüger, E. Pyza, A. Potulska-Chromik, A. Kostera-Pruszczyk,  A. Loboda, J. Stepniewski, Dulak J. Cardiovasc Res. 2023 Dec 11:cvad182.doi: 10.1093/cvr/cvad182.
  2. Casein kinase 2 activity is a host restriction factor for AAV transduction, Kraszewska I, Sarad K, Andrysiak K, Kopacz A, Schmidt L, Krüger M, Dulak J, Jaźwa-Kusior A., Mol Ther. 2023 Nov 10:S1525-0016(23)00611-1. doi: 10.1016/j.ymthe.2023.11.010.
  3. Unproven cell interventions in Poland and the exploitation of European Union law on advanced therapy medicinal products. Dulak J, Pecyna M. Stem Cell Reports. 2023 Aug 8;18(8):1610-1620. doi: 10.1016/j.stemcr.2023.05.017. 
  4. Single-cell transcriptomics reveals subtype-specific molecular profiles in Nrf2-deficient macrophages from murine atherosclerotic aortas.Sarad K, Stefańska M, Kraszewska I, Szade K, Sluimer JC, Błyszczuk P, Dulak J, Jaźwa-Kusior A. Front Immunol. 2023 Oct 27;14:1249379. doi: 10.3389/fimmu.2023.1249379. eCollection 2023.
  5. Nuclear Factor Erythroid 2-Related Factor 2 and Its Targets in Skeletal Muscle Repair and Regeneration. Łoboda A, Dulak J. Antioxid Redox Signal. 2023 Mar;38(7-9):619-642. doi: 10.1089/ars.2022.0208.
  6. miR-378 affects metabolic disturbances in the mdx model of Duchenne muscular dystrophy.Podkalicka P, Mucha O, Kaziród K, Szade K, Stępniewski J, Ivanishchuk L, Hirao H, Pośpiech E, Józkowicz A, Kupiec-Weglinski JW, Dulak J, Łoboda A. Sci Rep. 2022 Mar 10;12(1):3945. doi: 10.1038/s41598-022-07868-z.
  7. Overlooked and valuable facts to know in the NRF2/KEAP1 field. Kopacz A, Rojo AI, Patibandla C, Lastra-Martínez D, Piechota-Polanczyk A, Kloska D, Jozkowicz A, Sutherland C, Cuadrado A, Grochot-Przeczek A. Free Radic Biol Med. 2022 Nov 1;192:37-49. doi: 10.1016/j.freeradbiomed.2022.08.044. 
  8. Simvastatin does not alleviate muscle pathology in a mouse model of Duchenne muscular dystrophy. Mucha O, Podkalicka P, Kaziród K, Samborowska E, Dulak J, Łoboda A. Skelet Muscle. 2021 Sep 3;11(1):21. doi: 10.1186/s13395-021-00276-3
  9. Proximity Ligation Assay Detection of Protein-DNA Interactions-Is There a Link between Heme Oxygenase-1 and G-quadruplexes? Krzeptowski, W, Chudy P, Sokołowski G, Żukowska M,  Kusienicka A, Seretny A, Kalita A, Czmoczek A, Gubała J, Baran S, Klóska D, Jeż M, Stępniewski J, Szade K, Szade A, Grochot-Przęczek A, Józkowicz A, Nowak WN. Antioxidants. 2021;10(1):94. doi: 10.3390/antiox10010094.
  10. Generation of microRNA-378a-deficient hiPSC as a novel tool to study its role in human cardiomyocytes. Martyniak A, Andrysiak K, Motais B, Coste S, Podkalicka P, Ferdek P, Stępniewski J, Dulak J. J Mol Cell Cardiol. 2021 Jul 28;160:128-141. doi: 10.1016/j.yjmcc.2021.07.007.
  11. Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes, in Contrast to Adipose Tissue-Derived Stromal Cells, Efficiently Improve Heart Function in Murine Model of Myocardial Infarction. Stępniewski J, Tomczyk M, Andrysiak K, Kraszewska I, Martyniak A, Langrzyk A, Kulik K, Wiśniewska E, Jeż M, Florczyk-Soluch U, Polak K, Podkalicka P, Kachamakova-Trojanowska N, Józkowicz A, Jaźwa-Kusior A, Dulak J. Biomedicines. 2020 Dec 7;8(12):578. doi: 10.3390/biomedicines8120578.
  12. Lack of miR-378 attenuates muscular dystrophy in mdx mice. Podkalicka P, Mucha O, Bronisz-Budzyńska I, Kozakowska M, Pietraszek-Gremplewicz K, Cetnarowska A, Głowniak-Kwitek U, Bukowska-Strakova K, Cieśla M, Kulecka M, Ostrowski J, Mikuła M, Potulska-Chromik A, Kostera-Pruszczyk A, Józkowicz A, Łoboda A, Dulak J. JCI Insight. 2020 Jun 4;5(11): e135576. doi: 10.1172/jci.insight.135576
  13. Heme oxygenase-1 deficiency triggers exhaustion of hematopoietic stem cells. Szade K, Zukowska M, Szade A, Nowak W, Skulimowska I, Ciesla M, Bukowska-Strakova K, Gulati GS, Kachamakova-Trojanowska N, Kusienicka A, Einwallner E, Kijowski J, Czauderna S, Esterbauer H, Benes V, L Weissman I, Dulak J, Jozkowicz A. EMBO Rep. 2020 Feb 5;21(2):e47895. doi: 10.15252/embr.201947895.
  14. Cobalt protoporphyrin IX increases endogenous G‐CSF and mobilizes HSC and granulocytes to the blood. Szade A, Szade K, Nowak WN, Bukowska-Strakova K, Muchova L, Gońka M, Żukowska M, Cieśla M, Kachamakova-Trojanowska N, Rams-Baron M, Ratuszna A, Dulak J, Józkowicz A.  EMBO Mol Med. 2019 Dec;11(12):e09571. doi: 10.15252/emmm.201809571.
  15. miR-378 influences vascularization in skeletal muscles. Krist B,   Podkalicka P, Mucha O, Mendel M, Sępioł A, Ruriecka OM, Józefczuk E, Bukowska-Strakova K, Grochot-Przęczek A, Tomczyk M, Klóska D, Giacca M, Maga P, Niżankowski R, Józkowicz A, Łoboda A, Dulak J., Florczyk U. Cardiovasc Res, 2019; doi: 10.1093/cvr/cvz236
  16. Keap1 controls protein S-nitrosation and apoptosis-senescence switch in endothelial cells. Kopacz A, Klóska D, Proniewski B, Cysewski D, Personnic N, Piechota-Polańczyk A, Kaczara P, Zakrzewska A, Forman HJ, Dulak J, Józkowicz A, Grochot-Przęczek A, Redox Biol. 2019 Aug 22;28:101304. doi: 10.1016/j.redox.2019.101304.
  17. Various roles of heme oxygenase-1 in response of bone marrow macrophages to RANKL and in the early stage of osteoclastogenesis. Florczyk-Soluch U, Józefczuk E, Stępniewski J, Bukowska-Strakova K, Mendel M, Viscardi M, Nowak WN, Józkowicz A, Dulak J.  Sci Rep. 2018 Jul 17;8(1):10797. doi: 10.1038/s41598-018-29122-1
  18. Heme Oxygenase-1 Influences Satellite Cells and Progression of Duchenne Muscular Dystrophy in Mice. Pietraszek-Gremplewicz K, Kozakowska M, Bronisz-Budzynska I, Ciesla M, Mucha O, Podkalicka P, Madej M, Glowniak U, Szade K, Stepniewski J, Jez M, Andrysiak K, Bukowska-Strakova K, Kaminska A, Kostera-Pruszczyk A, Jozkowicz A, Loboda A, Dulak J.  Antioxid Redox Signal. 2018; 29: 128-148.
  19. Lack of Heme Oxygenase-1 Induces Inflammatory Reaction and Proliferation of Muscle Satellite Cells after Cardiotoxin-Induced Skeletal Muscle Injury. Kozakowska Pietraszek-Gremplewicz K, Ciesla M, Seczynska M, Bronisz-Budzynska I, Podkalicka P, Bukowska-Strakova K, Loboda A, Jozkowicz A, Dulak J.  Am J Pathol. 2018; 188: 491-506.
  20. Splenic Ly6Chi monocytes contribute to adverse late post-ischemic left ventricular remodeling in heme oxygenase-1 deficient mice. Tomczyk M, Kraszewska I, Szade K, Bukowska-Strakova K, Meloni M, Jozkowicz A, Dulak J, Jazwa A. Basic Res Cardiol. 2017 Jul;112(4):39.
  21. Heme oxygenase-1 controls the oxidative stress - HDAC4 - miR-206 axis in rhabdomyosarcoma. Ciesla M, Marona P, Kozakowska M, Jez M, Seczynska M, Loboda A, Bukowska-Strakova K, Szade A, Walawender M, Kusior M, Stepniewski J, Szade K, Krist B, Yagensky O, Urbanik A, Kazanowska B;  Dulak J, Jozkowicz  A. Cancer Res, 2016; 76: 5707-5718
  22. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionary conserved mechanism. Loboda A, Damulewicz M, Pyza E, Jozkowicz A, Dulak J. Cell Mol Life Sci. 2016 Apr 21; 73: 3221-3247 (review). – cited more than 1,500 times
  23. Murine bone marrow Lin-Sca-1+CD45- very small embryonic-like (VSEL) cells are heterogeneous population lacking Oct-4A expression. Szade K, Bukowska-Strakova K, Nowak WN,   Szade A, Kachamakova-Trojanowska N, Zukowska M, Jozkowicz A, Dulak J.  PLoS One. 2013 May 17;8(5):e63329. doi: 10.1371/journal.pone.0063329. 
  24. Pre-emptive hypoxia-regulated HO-1 gene therapy improves the post-ischemic limb perfusion and tissue regeneration in mice. Jazwa A; Stepniewski J, Zamykal M, Jagodzinska J, Meloni M,  Emanueli C, Jozkowicz A, Dulak J. Cardiovasc Res, 2013 Jan 1;97(1):115-24. doi: 10.1093/cvr/cvs284
  25. Heme oxygenase-1 inhibits myoblast differentiation by targeting myomirs. Kozakowska M, Ciesla M, Stefanska A, Skrzypek K, Was H, Jazwa A, Grochot-Przeczek A, Kotlinowski J, Szymula A, Sierpniowska A, Mazan M, Yagensky O, Lemke K, Florczyk U, Zebzda A, Dyduch G, Nowak WN, Szade K, Stepniewski J, Marek M, Derlacz R, Loboda A, Dulak J, Jozkowicz A. Antioxid Redox Signal. 2012 Jan 15;16(2):113-27.
  26. Opposite effect of HIF-1alpha and HIF-2alpha on regulation of IL-8 expression in endothelial cells. Florczyk U, Czauderna S, Stachurska A, Tertil M,  Nowak W, Kozakowska M,  Poellinger L,  Jozkowicz A,  Loboda A, Dulak J. Free Radicals Biology & Medicine, 2011: 51: 1882-1892.
  27. Role of Heme Oxygenase-1 in Human Endothelial Cells. Lesson From the Promoter Allelic Variants. Taha H, Skrzypek K, Guevara I, Nigisch A, Mustafa S, Grochot-Przeczek A, Ferdek P, Was H, Kotlinowski J, Kozakowska K, Balcerczyk A, Muchova L, Vitek L, Weigel G, Dulak J, Jozkowicz A. Arterioscler Thromb Vasc Biol 2010;30: 1634-1641
  28. Heme oxygenase-1 and carbon monoxide in vascular pathobiology; focus on angiogenesis. Dulak J, Deshane J, Jozkowicz A. Agarwal A.  Circulation, 2008, 117: 231-241 (invited review).
  29. Stromal cell-derived factor-1 promotes angiogenesis via a heme oxygenase-1 dependent pathway. Deshane J, Chen S, Caballero S, Grochot-Przeczek A, Was H, Li Calzi S, Lach R, Hock TD, Chen B, Hill-Kapturczak N, Siegal GP, Dulak J, Jozkowicz A, Grant MB, Agarwal A. J Exp Med, 2007 Mar 19;204(3):605-18
  30. Overexpression of heme oxygenase-1 in murine melanoma: increased proliferation and viability of tumor cells, decreased survival of mice. Was H, Cichon T, Smolarczyk R, Rudnicka D,  Stopa M, Chevalier C, Leger JJ, Lackowska B, Grochot A, Bojkowska K,  Ratajska  A, Kieda C, Szala S, Dulak J, Jozkowicz A. Amer J Pathol, 2006, 169:2181-98

  1. Cobalt porphyrins for the treatment of blood-related disorders. Agata Szade, Krzysztof Szade, Alicja Józkowicz, Józef Dulak. United States Patent and Trademark Office  patent no. US10010557 (03.07.2018) and US10328085 (25.06.2019); 
  2. Cobalt porphyrins for the treatment of blood-related disorders. Agata Szade, Krzysztof Szade, Alicja Józkowicz, Józef Dulak. European Patent Office patent no. EP 3139917 (03.07.2019)  
  3. Cobalt porphyrins for the treatment of blood-related disorders. Agata Szade, Krzysztof Szade, Alicja Józkowicz, Józef Dulak. Polish Patent  Office (Urząd Patentowy Rzeczypospolitej Polskiej, Patent nr 233504; (26.11.2019).

  • Molecular mechanisms of Duchenne muscular dystrophy 
  • Mechanisms of stem cell differentiation and reprogramming 
  • Plasmid and viral vectors – construction and validation in experimental gene therapy 
  • Role of oxidative stress in regulation of gene expression 
  • Role of heme oxygenase-1 in reparative processes and inflammation
  • Gene and cell therapy for treatment of cardiovascular disorders  
  • Mechanisms of induction of endogenous mobilizing factors 

  • Basic knowledge on cell biology and molecular biology.
    Techniques – cell culture and molecular biology techniques.
    Excellent command/highly proficient in spoken and written English.
    Teamwork capabilities.