Skip to main content

Web Content Display Web Content Display

Web Content Display Web Content Display

Department of Medical Biotechnology

Webpage

 

http://www.zbm.wbbib.uj.edu.pl/

Head

professor Józef Dulak, PhD, DSc
room: B121 (3.0.25), phone: + 48 12 664 63 75

Staff

professor Alicja Józkowicz, PhD, DSc
room: B103 (3.0.35), phone: + 48 12 664 64 11, e-mail: alicja.jozkowicz@uj.edu.pl

Agnieszka Łoboda, PhD, DSc
room (MCB): 2/24, phone: + 48 12 664 64 12, e-mail: agnieszka.loboda@uj.edu.pl

Agnieszka Jaźwa, PhD
room (MCB): 2/24, phone: + 48: 12 664 64 12, e-mail: agnieszka.jazwa@uj.edu.pl

Urszula Florczyk-Soluch, PhD
room: B017 (3.01.7), phone: + 48 12 664 63 98, e-mail: urszula.florczyk@uj.edu.pl (maternity leave)

Anna Grochot-Przęczek, PhD
room: B017 (3.01.7), phone: + 48 12 664 63 98, e-mail: anna.grochot-przeczek@uj.edu.pl

Neli Kachamakova-Trojanowska, PhD
room (MCB): 2/24 phone: + 48 12 664 60 12, e-mail: neli.kachamakova-trojanowska@uj.edu.pl

Magdalena Kozakowska, PhD
room: B017 (3.01.7), phone: + 48 12 664 63 98, e-mail: magdalena.kozakowska@uj.edu.pl

Witold Nowak, PhD
room: B017 (3.01.7), phone: + 48 12 664 63 98, e-mail: witold.nowak@uj.edu.pl

Aleksandra Piechota–Polańczyk, PhD
room (MCB): 2/24 phone: + 48 12 664 60 12, e-mail: aleksandra.piechota-polanczyk@uj.edu.pl

Jacek Stępniewski, PhD
room: B017 (3.01.7), phone: + 48 12 664 63 98, e-mail: jacek.stepniewski@uj.edu.pl

Agata Szade, PhD
room: B017 (3.01.7), phone: + 48 12 664 63 98, (maternity leave), e-mail: agata.szade@uj.edu.pl

Krzysztof Szade, PhD
room: B017 (3.01.7), phone: + 48 12 664 63 98, e-mail: krzysztof.szade@uj.edu.pl

Agnieszka Andrychowicz-Róg, MSc
room: B110 (3.0.2), phone: + 48 12 664 64 06, e-mail: agnieszka.andrychowicz-rog@uj.edu.pl 

Janusz Drebot, MSc, Eng
room: B110 (3.0.2), phone: + 48 12 664 64 06, e-mail: janusz.drebot@uj.edu.pl

Karolina Hajduk, MSc
animal facility room, phone: + 48 12 664 66 09; 66 07; 54 49; 68 33, e-mail: karolina.hajduk@uj.edu.pl

Tomasz Hajduk, technician
animal facility room, tel.: + 48 12 664 66 09;66 07; 54 49; 68 33, e-mail: tomasz.hajduk@uj.edu.pl

Joanna Uchto-Bajołek, MSc
room: B104 (3.0.34), phone: + 48 12 664 61 36, e-mail: joanna.uchto@uj.edu.pl

Ewa Werner, MSc, Eng
animal facility room, phone: + 48 12 664 66 09; 66 07; 54 49; 68 33, e-mail: ewa.werner@uj.edu.pl

Agata Pietrusiak, MSc
room: B104 (3.0.34), phone: + 48 12 664 61 36, e-mail: agata.pietrusiak@uj.edu.pl

 

PhD students

Iwona Bronisz-Budzyńska, room: B017 (3.01.7), phone: + 48 12 664 63 98
Mateusz Jeż, room: B017 (3.01.7), phone: + 48 12 664 63 98
Damian Klóska, room: B017 (3.01.7), phone: + 48: 12 664 63 98
Anna Kusienicka, room: B017 (3.01.7), phone: + 48 12 664 63 98 (maternity leave)
Olga Mucha, room: B017 (3.01.7), phone: + 48 12 664 63 98
Paulina Podkalicka, room: B017 (3.01.7), phone: + 48 12 664 63 98
Mateusz Tomczyk, room: B017 (3.01.7), phone: + 48 12 664 63 98
Monika Żukowska, room: B017 (3.01.7), phone: + 48 12 664 63 98
Kalina Andrysiak, room: B017 (3.01.7), phone: + 48 12 664 63 98
Izabela Kraszewska, room: B017 (3.01.7), phone: + 48 12 664 63 98
Aleksandra Kopacz,  room: B017 (3.01.7), phone: + 48 12 664 63 98
Klaudia Kulik – (PhD program in applied science) Kardio-Med. Silesia, Zabrze
Agnieszka Langrzyk – (PhD program in applied science) Kardio-Med. Silesia, Zabrze
Ewa Wiśniewska – (PhD program in applied science) Kardio-Med. Silesia, Zabrze
Justyna Martyka – (PhD program in applied science) Selvita S.A
Karolina Pyziak – (PhD program in applied science) Selvita S.A

 

Research topics

  • Stem cell biology: mechanisms of cellular reprogramming and differentiation:

- mechanisms of induced pluripotent stem cells differentiation to cardiomyocytes, endothelial cells and skeletal muscle 

- mechanisms of differentiation on satellite cells

  • Interaction between microenvironment and stem cells: role of the niche in differentiation, aging and leukemic transformation of hematopoietic stem cells
  • Effect of heme on genome stability and cellular senescence
  • Molecular mechanisms of Duchenne muscular dystrophy – role of heme oxygenase-1, Nrf2 and microRNAs in differentiation of satellite cells, regeneration and vascularization of skeletal muscle and heart
  • Vascular biology: mechanisms of angiogenesis and vasculogenesis
  • Medical biotechnology: gene and cell therapy in modulation of neovascularization and inflammation
  • Cancer biology: mechanisms of tumor initiation, growth, metastasis and resistance to therapy, role of heme oxygenase-1 and hypoxia
  • Anti-tumor therapies
  • Role of microRNAs in cardiovascular disorders and tumor development
  • Role of hypoxia, anti-oxidant genes and microRNAs in regulation of gene expression

Methods and specialistic equipment

Selected techniques

  • Induced pluripotent stem cells (iPSCs) technology
  • Flow cytometry and cell sorting
  • Molecular in vivo imaging (Vevo 2100, IVIS© Lumina II, Laser Doppler)
  • Laser microdissection method
  • Gene silencing by CRISPR/Cas9 and shRNA methods
  • siRNA & microRNAs technology
  • Angiogenic assays in vitro: tube formation on matrigel, ring aortic assay, spheroid assay.
  • In vivo models: hind limb ischemia, wound healing, tumor inoculation, chemical carcinogenesis, mouse model of myocardial infarction, transplantation of hematopoietic stem cells
  • Gene cloning, construction of plasmids and viral vectors: retroviral, lentiviral, adenoviral, AAV
  • Regulated gene expression: hypoxia-induced and tetracycline-induced expression systems, establishing of stably-transfected cell lines
  • Isolation and culture of primary cells: satellite cells, hematopoietic stem cells, mesenchymal stromal cells, endothelial cells, renal proximal epithelial cells, fibroblasts, vascular smooth muscle cells

Animal models, kept in modern animal facility (SPF – specific pathogen free)

  • miR-146a knockout mice
  • miR-378a knockout mice
  • mdx mice (dystrophin knockout
  • HO-1 knockout mice
  • HO-1-GFP knockout ice
  • HO-1 floxed mice (knock out & knock in)
  • Nrf2 knockout mice
  • diabetic db/db mice
  • Cre-recombinase cell-specific mice
  • Immunodeficient mice, including NSG mice

Specialized equipment
Modern animal facility operating in SPF standard houses several strains of knockout and transgenic mice and rats, kept in individually ventilated cages (IVC). The facility is equipped in:

  • Laser Doppler System for blood flow measurement in animals
  • Vevo 2100 (VisualSonics) micro-ultrasound system for high-resolution imaging of small animals
  • IVIS© Lumina II (Caliper Life Science) imaging system for both fluorescent and bioluminescent imaging in vivo
  • scil Vet abc hematology analyzer (different animal species can be analyzed).

Flow cytometry laboratory, equipped in:

  • BD LSRFortessa flow cytometer
  • MoFloTMXDP (Beckman Coulter) high-speed cell sort
  • ImageStreamX (Amnis Corporation) – system which integrates the features of flow cytometry and fluorescent microscopy combined with a modern system of image analysis

Histological laboratory, equipped in:

  • automated tissue processor
  • automated tissue embedding system
  • paraffin & crytostat microtome
  • automated staining system for paraffin sections
  • Laser Microdissection LMD7000 (Leica) for cutting specific structures form frozen and paraffin-embedded

and:

  • Laminar hoods and chambers for hypoxic conditions/hypoxic incubator for cells culturing in low oxygen concentration or in shear-stress conditions
  • Bioanalyzer 2100 (Agilent) for checking the  nucleic acid integrity
  • Real-time PCR StepOnePlus systems (Applied Biosystem) for analysis of a gene expression profile on mRNA level, as well as microRNAs analysis
  • AmpliSpeed slide cycler (Beckman Coulter) for RT-PCR reaction from very small amount of samples (even one cell)
  • FlexMap3D (Luminex) for measurement of a dozen or so of cytokines/growth factors in a small volume of sample (serum/plasma/medium)

Current projects

  1. Krzysztof Szade: Aging of hematopoetic stem cells - unrevealed role of Neogenin-1/Netrin-1 axis. (2018-2020), HOMING Foundation for Polish Science.
  2. Mateusz Jeż: Role of microRNA-15 family, cell metabolism and hypoxia in proliferation of cardiomyocytes derived from human induced pluripotent stem cell.  (2018-2020), PRELUDIUM , National Science Center (NCN).
  3. Alicja Józkowicz: Heme and G-quadruplexes: overlooked function of heme oxygenases? (2018-2021). OPUS, National Science Center (NCN)
  4. Anna Grochot-Przęczek: Senescence or apoptosis: role of miR-34a in endothelial cells. (2017-2022),  SONATA BIS, National Science Centre (NCN).
  5. Agnieszka Łoboda: Impaired angiogenesis in Duchenne muscular dystrophy - is there a role for heme oxygenase-1 and statins? (2017-2020),  OPUS,  National Science Centre (NCN).
  6. Mateusz Tomczyk: Immune response in remodeling and regeneration of cardiac muscle following myocardial infarction. Significance of macrophages and heme oxygenase-1. (2017-2020),  ETIUDA, National Science Centre (NCN).
  7. Alicja Józkowicz: DNA repair in hematopoietic stem cells: what is a role of nuclear heme oxygenase-1? (2016-2020). HARMONIA, National Science Centre (NCN).
  8. Mateusz Tomczyk: Tissue-resident macrophages in remodeling and regeneration of cardiac muscle. Role of heme oxygenase-1. (2016-2018), PRELUDIUM,  National Science Centre (NCN
  9. Agnieszka Jaźwa: Role of heme oxygenase-1 in monocyte- and macrophage-mediated progression of ischemic heart disease. (2015-2020). SONATA BIS, National Science Centre (NCN).
  10. Józef Dulak: The role of heme oxygenase-1 in cardiomyocyte differentiation from induced pluripotent stem cells (HMOX-CARD). (2015-2018). HARMONIA, National Science Centre (NCN).
  11. Aleksandra Piechota-Polańczyk: The role of heme oxygenase 1 in abdominal aortic aneurysm development. (2015-2018). FUGA, National Science Centre (NCN).
  12. Józef Dulak: Role of microRNAs and inflammation in injury and regeneration of skeletal muscles in Duchenne muscular dystrophy. (2013-2018). MAESTRO, National Science Centre (NCN).

And:

  • Heart on Chip based on induced pluripotent Stem Cell Technology for personalized Medicine - Project CISTEM , Horizon 2020, project coordinated by   BioSense Institute in Serbia (2018-2021)
  • Mesenchymal stem cells and MSC-enriched scaffold as an alternative therapy for myocardial insufficiency. National Centre for Research and Development (NCBiR), STRATEGMED Programme. PHOENIX consortium, project coordinated by Kardio-Med Silesia in Zabrze. (2015-2018).
  • Epigenetic therapies in oncology. National Centre for Research and Development (NCBiR), STRATEGMED Programme. EPTHERON consortium, project coordinated by Selvita Ltd. Company. (2015-2018).​

Selected publications

  1. Nrf2 sequesters Keap1 preventing podosome disassembly: a quintessential duet moonlights in endothelium. Klóska D et al., Antioxid Redox Signal. 2018 Sep 10. doi: 10.1089/ars.2018.7505.
  2. Heme Oxygenase-1 Influences Satellite Cells and Progression of Duchenne Muscular Dystrophy in Mice. Pietraszek-Gremplewicz K et al., Antioxid Redox Signal. 2018; 29: 128-148. 
  3. Lack of Heme Oxygenase-1 Induces Inflammatory Reaction and Proliferation of Muscle Satellite Cells after Cardiotoxin-Induced Skeletal Muscle Injury. Kozakowska M et al. Am J Pathol. 2018; 188: 491-506.
  4. Splenic Ly6Chi monocytes contribute to adverse late post-ischemic left ventricular remodeling in heme oxygenase-1 deficient mice. Tomczyk M. et al. Basic Res Cardiol. 2017; 112: 39;
  5. Heme oxygenase-1 controls the oxidative stress - HDAC4 - miR-206 axis in rhabdomyosarcoma. Ciesla M et al., Cancer Res, 2016; 76: 5707-5718..
  6. Induced pluripotent stem cells as a model for diabetes investigation. Stepniewski J et al., Sci Rep. 2015; 5: 8597.
  7. Heme oxygenase-1 is required for angiogenic function of bone marrow-derived progenitor cells: role in therapeutic revascularization. Grochot-Przeczek A et al., Antioxid Redox Signal. 2014; 20: 1677-1692.
  8. Murine bone marrow Lin-Sca-1+CD45- very small embryonic-like (VSEL) cells are heterogeneous population lacking Oct-4A expression. Szade K, et al.  PLoS One. 2013 May 17;8(5):e63329. 
  9. Nrf2 regulates angiogenesis: effect on endothelial cells, bone marrow-derived proangiogenic cells and hind limb ischemia. Florczyk U et al., Antioxid Redox Signal. 2014; 20:1693-1708.
  10. Pre-emptive hypoxia-regulated HO-1 gene therapy improves the post-ischemic limb perfusion and tissue regeneration in mice. Jazwa A. et al. Cardiovasc Res, 2013; 97: 115-24. 

Patent

  1. Cobalt porphyrins for the treatment of blood-related disorders. Agata Szade, Krzysztof Szade, Alicja Józkowicz, Józef Dulak United States Patent No. 10,010,557 B2, July 3, 2018

Batchelor/master thesis topics

  • Role of HO-1 and microRNAs in Duchenne muscular dystrophy
  • Stem cell differentiation and reprogramming
  • Mechanism of aging of endothelial cells 
  • Role of niche in differentiation, aging and leukemic transformation of hematopoietic stem cells – mechanisms of leukemia development
  • Role of heme in the regulation of cell cycle and maintaining of genome stability
  • Induced pluripotent stem cells – generation and differentiation
  • Plasmid and viral vectors – construction and validation in experimental gene therapy
  • Vascular biology: role of hypoxia inducible factor 1 (HIF-1) in regulation of gene expression in endothelial cells and tumor cells
  • Role of oxidative stress in regulation of gene expression in endothelial cells, progenitor cells and tumor cells
  • Role of heme oxygenase-1 in angiogenesis, vasculogenesis, resistance of cancer cells to therapy; role of heme oxygenase-1 in wound healing
  • Gene and cell therapy for treatment of cardiovascular disorders

Requirements for candidates

  • Basic knowledge on cell biology and molecular biology
  • Techniques – cell culture and molecular biology techniques
  • Excellent command/highly proficient in spoken and written English
  • Teamwork capabilities