Skip to main content

Web Content Display Web Content Display

Skip banner

Web Content Display Web Content Display

Department of Cell Biology

http://www.zbk.wbbib.uj.edu.pl

Prof. dr hab. Zbigniew Madeja
room: C120 (2.0.25), phone: +48 12 664 61 42, e-mail: z.madeja@uj.edu.pl

Prof. dr hab. Jarosław Czyż 
room: C123 (2.0.28), phone: +48 12 664 61 46, e-mail: jarek.czyz@uj.edu.pl

Prof. dr hab. Justyna Drukała 
room: C124 (2.0.29), phone: +48 12 664 61 45, e-mail: justyna.drukala@uj.edu.pl

Prof. dr hab. Ewa Zuba-Surma 
room: C119A (2.0.24A), phone: +48 12 664 61 80, e-mail: ewa.zuba-surma@uj.edu.pl

Dr hab. Marta Michalik 
room: C118 (2.0.23), phone: +48 12 664 61 44, e-mail: marta.michalik@uj.edu.pl

Dr hab. Paweł Ferdek 
room: C121 (2.0.26), phone: +48 12 664 61 43, e-mail: pawel.ferdek@uj.edu.pl

Dr Sylwia Bobis-Wozowicz
room: C122 (2.0.27), phone: +48 12 664 61 83, e-mail: sylwia.bobis@uj.edu.pl

Dr Elżbieta Karnas 
room: C125 (2.0.30), phone: +48 12 664 61 47, e-mail: e.karnas@uj.edu.pl

Dr Sławomir Lasota
room: C121 (2.0.26), phone: +48 12 664 61 43, e-mail: slawomir.lasota@uj.edu.pl

Dr Katarzyna Piwowarczyk
room: C121 (2.0.26), phone: +48 12 664 61 43, e-mail: katarzyna.szpak@uj.edu.pl

Dr Monika Rak 
room: C122 (2.0.27), phone: +48 12 664 61 83, e-mail: monika.rak@uj.edu.pl

Dr Anna Łabędź-Masłowska 
room: C122 (2.0.27), phone: +48 12 664 61 83, e-mail: anna.labedz-maslowska@uj.edu.pl

Dr Milena Paw 
room: C122 (2.0.27), phone: +48 12 664 61 83, e-mail: milena.paw@uj.edu.pl

Dr Dawid Wnuk 
room: C125 (2.0.30), phone: +48 12 664 61 47, e-mail: dawid.wnuk@uj.edu.pl

Mgr Joanna Stalińska
Cell Bank (2.0.8), phone: +48 12 664 61 89, e-mail: joanna.stalinska@uj.edu.pl 

Mgr Alicja Ślusarczyk
Cell Bank (2.0.8), phone: +48 12 664 61 89, e-mail: alicja.slusarczyk@uj.edu.pl

Mgr Maciej Pudełek
room: C125 (2.0.30), phone: +48 12 664 61 47, e-mail: maciej.pudelek@uj.edu.pl 

Mgr Michał Rąpała
room: C119B (2.0.24B), phone: +48 12 664 62 27, e-mail: michal.rapala@uj.edu.pl

Mgr Anna Przybyszewska 
room: C137 (2.0.13), phone: +48 12 664 61 40, e-mail: anna.przybyszewska@uj.edu.pl

Patrycja Dudek, room: C122 (2.0.27), phone: +48 12 664 61 83
Agnieszka Kusiak, room: C125, phone: +48 12 664 61 47
Jacek Litewka, room: C119B (2.0.24B), phone +48 12 664 62 27
Kinga Nit, room: C119B (2.0.24B), phone: +48 12 66462 27
Monika Orpel, room: C125 (2.0.30), phone: +48 12 664 61 47
Maciej Pudełek, room: C125 (2.0.30), phone: +48 12 664 61 47
Michał Rąpała, room: C119B (2.0.24B), phone +48 12 664 62 27

  • Functions of direct cell-cell interactions in regulating cancer cell migration activity
  • Role of reactive oxygen species in regulating the migration activity and intercellular communication by gap junctions
  • Electrotaxis mechanisms
  • Application of electrochemical methods in cell biology
  • Involvement of connexins and cell adhesion molecules in the regulation of cancer cells'  invasiveness
  • Mechanisms of epithelial–mesenchymal transition (EMT) and its interrelations with cancer stem cells and metabolic elasticity of cancer cells
  • Cancer stem cells, drug-resistance and combined strategies of cancer treatment 
  • Effect of phytoactive compounds on cancer drug-resistance
  • Fibroblast to myofibroblast transition (FMT) mechanisms and role of FMT in bronchial wall remodeling in asthma; searching for and testing the selected compounds affecting the FMT efficiency with possible therapeutic potential
  • Mechanisms of bronchial / lung cell interactions within epithelial-mesenchymal trophic unit
  • Mechanisms of endocytosis
  • The effect of selected compounds from the chalcone family on the inhibition of pro-fibrotic changes in selected diseases
  • The use of advanced cell culture techniques (cell cultures at the air-liquid interface in the ALI model; epithelial-mesenchymal trophic unit EMTU – co-cultures of epithelial cells with fibroblasts) in the study of respiratory and skin diseases
  • Application of in vitro skin cell cultures in clinical practice, such as wound treatment and plastic surgery
  • Tissue skin engineering – reconstruction of three-dimensional connective tissue equivalents using mesenchymal stem cells
  • Optimization of stem cell and progenitor cell populations for applications in experimental cardiology and orthopedy including induced pluripotent stem cells (iPSCs) as well as mesenchymal stem cells (MSCs) of different antigenic phenotype various types 
  • Applications of stem cells and stem cell derived extracellular vesicles (EVs) in regenerative medicine
  • Optimization of procedures for various stem cell and EV fractions identification and isolation for their use in regenerative medicine 
  • Role of stem cell derived extracellular vesicles (native and genetically modified) in tissue
  • Optimization of biocompatible scaffolds combining biomaterials (including graphene) and defined stem cell populations for tissue regeneration
  • Development of novel stem cell- and EV-based advanced therapy medicinal products (ATMPs) for their use in treatment of patients with civilization diseases (preclinical and clinical studies)
  • Genetic modification in vivo, using extracellular vesicles carrying the CRISPR/Cas9 system, TALEN and ZFN
  • Signaling mechanisms underlying physiology and pathophysiology of the pancreas; testing new therapeutic strategies against diseases of the pancreas

  • Cell and tissue engineering
  • Fluorescence microscopy
  • Flow cytometry (Guava EasyCyte, Merck)
  • Water purification system Simplicity UV (Merk)
  • CFX384 Real Time System (BioRad) for gene expression analysis on 384 well plates
  • FACSAria III (Becton Dickinson) fluorescence-activated cell sorting system
  • Olympus IX81 fluorescent microscope equiped with MicroPublisher 3.3 RTV camera
  • Neon Electroporation System (Invitrogen) for cell electroporation
  • Measurement of nanoparticles concentration and size by Nanoparticle Tracking Analysis (NTA) (Nanosight NS300, Malvern)
  • Classical flow cytometry (Guava EasyCyte, Merck)
  • Imaging flow cytometry (ImageStreamX Mark II Imaging Flow Cytometer, Luminex Corp.)
  • High-resolution flow cytometry  dedicated for nanoparticle analysis of (Apogee A60-Micro-PLUS, Apogee Flow Systems)
  • Isolation of nanoparticles from biological fluids (Optima XPN Ultracentrifuge, Beckman Coulter)Cell cultures under low oxygen conditions (hypoxia) in the InvivO2 chamber (Russkin); models of hypoxia and reoxygenation
  • Cell imaging under hypoxic conditions using the JuLiStage system (NanoEntek)
  • Genetic modification of cells using lentiviral vectors; transfections by chemical methods and nucleofection using the Neon Transfection System (Invitrogen)

  1. Paweł Ferdek: New insights into pancreatic diseases – ion signalling, mitochondria and the TRPA1 channel. (2023–2028), SONATA BIS 12, NCN.
  2. Dawid Wnuk: Mechanisms of butein's effect on cellular processes during bronchial remodelling in asthma. (2023–2024), ID UJ Individual Research Grant, POB BioS.
  3. Agnieszka Kusiak: Changes in mitochondria of activated pancreatic stellate cells and their implications in tissue pathophysiological conditions. (2022–2025), PRELUDIUM 20, NCN.
  4. Maciej Pudełek: Mitofucins as determinants of resistance of glioblastoma multiforme cells to doxorubicin. (2022–2025), PRELUDIUM 20, NCN.
  5. Ewa Zuba-Surma: Molecular and cellular mechanisms of pro-regenerative potential of extracellular vesicles (EVs) derived from stem cells in ischemic heart damage: the role of microRNAs. (2020–2025), MAESTRO 11, National Science Centre (NCN)
  6. Paweł Ferdek: A star or a villain: why do pancreatic stellate cells turn “evil” after activation? (2020–2023), OPUS 17, National Science Centre (NCN)
  7. Zbigniew Madeja: Biphasic mechanism of electrotaxis of mouse 3T3 fibroblasts: complementary role of ion channels and chemoattractant receptors. (2019–2023), OPUS 16, National Science Centre (NCN)
  8. Ewa Zuba-Surma: Development of optimized methods for treatment of tissue injuries based on innovative composites and mesenchymal stem cells and their derivatives in patients with civilization diseases. (2017–2023), STRATEGMED, National Centre for Research and Development (NCBiR) 
  9. Michał Rąpała: Synergistic action of novel manganese porphyrins with sodium ascorbate as a system for targeted anti-cancer therapies. DIAMOND GRANT 9, MNiSW.
  10. Maciej Pudełek: The role of drug resistance conditioning mechanisms in shaping the invasive potential of human glioblastoma multiforme cells. DIAMOND GRANT 8, NCN.

  1. Kusiak AA, Jakubowska MA, Stopa KB, Zhang X, Huang W, Gerasimenko JV, Gersimenko OV, Sutton R, Petersen OH, Ferdek PE.  (2022) Activation of pancreatic stellate cells attenuates intracellular Ca2+ signals due to downregulation of TRPA1 and protects against cell death induced by alcohol metabolites. Cell Death & Disease 13, 744. https://doi.org/10.1038/s41419-022-05186-w
  2. Ferdek PE, Krzysztofik D, Stopa KB, Kusiak AA, Paw M, Wnuk D & Jakubowska MA (2022) When healing turns into killing - the pathophysiology of pancreatic and hepatic fibrosis. The Journal of Physiology, 600(11), 2579–2612. https://doi.org/10.1113/JP281135
    Karnas E, Sekuła-Stryjewska M, Kmiotek-Wasylewska K, Bobis-Wozowicz S, Ryszawy D, Sarna M, Madeja Z, Zuba-Surma EK. Extracellular vesicles from human iPSCs enhance reconstitution capacity of cord blood-derived hematopoietic stem and progenitor cells. Leukemia. 2021 Oct;35(10):2964-2977.
  3. Paw M, Wnuk D, Jakieła B, Bochenek G, Sładek K, Madeja Z, Michalik M. Responsiveness of human bronchial fibroblasts and epithelial cells from asthmatic and non-asthmatic donors to the transforming growth factor-β1 in epithelial-mesenchymal trophic unit model. BMC Molecular and Cell Biology, 2021, 22 (1):19. doi.org/10.1186/s12860-021-00356-8
  4. Labedz-Maslowska A, Szkaradek A, Mierzwinski T, Madeja Z, Zuba-Surma E. Processing and Ex Vivo Expansion of Adipose Tissue-Derived Mesenchymal Stem/Stromal Cells for the Development of an Advanced Therapy Medicinal Product for use in Humans. Cells 2021, 10, 1908; doi:10.3390/cells10081908
  5. Labedz-Maslowska A, Bryniarska N, Kubiak A, Kaczmarzyk T, Sekula-Stryjewska M, Noga S, Boruczkowski D, Madeja Z, Zuba-Surma E. Multilineage Differentiation Potential of Human Dental Pulp Stem Cells-Impact of 3D and Hypoxic Environment on Osteogenesis In Vitro. Int J Mol Sci. 2020, 21, 17, 6172; doi: 10.3390/ijms21176172.
  6. Piejko M, Radziun K, Bobis-Wozowicz S, Waligorska A, Zimolag E, Nessler M, Chrapusta A, Madeja Z, Drukala J. Adipose-Derived Stromal Cells Seeded on Integra®Dermal Regeneration Template Improve Post-Burn Wound Reconstruction. Bioengineering 2020, 7, 67; doi:10.3390/bioengineering7030067.
  7. Wróbel T, Luty M, Catapano J, Karnas E, Szczygieł M, Piwowarczyk K, Ryszawy D, Drabik G, Zuba-Surma E, Siedlar M, Madeja Z, Elas M, Czyż J. CD44+ cells determine fenofibrate-induced microevolution of drug-resistance in prostate cancer cell populations. Stem Cells 2020 38(12):1544-56. doi: 10.1002/stem.3281
  8. Kochanowski P, Catapano J, Pudełek M, Wróbel T, Madeja Z, Ryszawy D, Czyż J. Temozolomide Induces the Acquisition of Invasive Phenotype by O6-Methylguanine-DNA Methyltransferase (MGMT)+ Glioblastoma Cells in a Snail-1/Cx43-Dependent Manner. Int J Mol Sci. 2021 Apr 16;22(8):4150. doi: 10.3390/ijms22084150
  9. Wnuk D, Paw M, Ryczek K, Bochenek G, Sładek K, Madeja Z, Michalik M. Enhanced asthma-related fibroblast to myofibroblast transition is the result of profibrotic TGF-β/Smad2/3 pathway intensification and antifibrotic TGF-β/Smad1/5/(8)9 pathway impairment. Sci Rep. 2020 Oct 5;10(1):16492. doi: 10.1038/s41598-020-73473-7.
  10. Pudełek M, Król K, Catapano J, Wróbel T, Czyż J, Ryszawy D. Epidermal Growth Factor (EGF) Augments the Invasive Potential of Human Glioblastoma Multiforme Cells via the Activation of Collaborative EGFR/ROS-Dependent Signaling. Int J Mol Sci. 2020 May 20;21(10):3605. doi: 10.3390/ijms21103605.
  11. Luty M, Piwowarczyk K, Łabędź-Masłowska A, Wróbel T, Szczygieł M, Catapano J, Drabik G, Ryszawy D, Kędracka-Krok S, Madeja Z, Siedlar M, Elas M, Czyż J. Fenofibrate Augments the Sensitivity of Drug-Resistant Prostate Cancer Cells to Docetaxel. Cancers (Basel). 2019 Jan 11;11(1):77. doi: 10.3390/cancers11010077.
  12. Adamiak M, Cheng G, Bobis-Wozowicz S, Zhao L, Kedracka-Krok S, Samanta A, Karnas E, Xuan YT, Skupien-Rabian B, Chen X, Jankowska U, Girgis M, Sekula M, Davani A, Lasota S, Vincent RJ, Sarna M, Newell KL, Wang OL, Dudley N, Madeja Z, Dawn B, Zuba-Surma EK. Induced Pluripotent Stem Cell (iPSC)-Derived Extracellular Vesicles Are Safer and More Effective for Cardiac Repair Than iPSCs. Circ Res. 2018 Jan 19;122(2):296-309.
  13. Sekuła M, Domalik-Pyzik P, Morawska-Chochół A, Bobis-Wozowicz S, Karnas E, Noga S, Boruczkowski D, Adamiak M, Madeja Z, Chłopek J, Zuba-Surma EK. Polylactide- and polycaprolactone-based substrates enhance angiogenic potential of human umbilical cord-derived mesenchymal stem cells in vitro - implications for cardiovascular repair. Mater Sci Eng C Mater Biol Appl. 2017 Aug 1;77:521-533.   
  14. Bobis-Wozowicz S, Kmiotek K, Kania K, Karnas E, Labedz-Maslowska A, Sekula M, Kedracka-Krok S, Kolcz J, Boruczkowski D, Madeja Z, Zuba-Surma EK. Diverse impact of xeno-free conditions on biological and regenerative properties of hUC- MSCs and their extracellular vesicles. J Mol Med (Berl). 2017 Feb;95(2):205-220.
  15. Piwowarczyk K, Kwiecień E, Sośniak J, Zimoląg E, Guzik E, Sroka J, Madeja Z, Czyż J. Fenofibrate Interferes with the Diapedesis of Lung Adenocarcinoma Cells through the Interference with Cx43/EGF-Dependent Intercellular Signaling. Cancers (Basel). 2018 Sep 28;10(10). doi: 10.3390/cancers10100363.
  16. Sroka J, Zimolag E, Lasota S, Korohoda W, Madeja Z. Electrotaxis: Cell Directional Movement in Electric Fields. Methods Mol Biol. 2018;1749:325-340. doi: 10.1007/978-1-4939-7701-7_23.
  17. Zimolag E, Borowczyk-Michalowska J, Kedracka-Krok S, Skupien-Rabian B, Karnas E, Lasota S, Sroka J, Drukala J, Madeja Z. Electric field as a potential directional cue in homing of bone marrow-derived mesenchymal stem cells to cutaneous wounds. Biochim Biophys Acta Mol Cell Res. 2017 Feb;1864(2):267-279. doi: 10.1016/j.bbamcr.2016.11.011. PubMed PMID: 27864076.
  18. Rak M, Ochałek A, Gawarecka K, Masnyk M, Chmielewski M, Chojnacki T, Swiezewska E, Madeja Z. Boost of serum resistance and storage stability in cationic polyprenyl-based lipofection by helper lipids compositions. Eur J Pharm Biopharm. 2020 Oct;155:199-209. doi: 10.1016/j.ejpb.2020.07.028. 
  19. Michalik M, Wójcik-Pszczoła K, Paw M, Wnuk D, Koczurkiewicz P, Sanak M, Pękala E, Madeja Z. Fibroblast-to-myofibroblast transition in bronchial asthma. Review. Cell Mol Life Sci. 2018; 75:3943–3961. Doi: 10.1007/s00018-018-2899-4.
  20. Paw M, Wnuk D, Kądziołka D, Sęk A, Lasota S, Czyż J, Madeja Z, Michalik M. Fenofibrate Reduces the Asthma-Related Fibroblast-To-Myofibroblast Transition by TGF- β /Smad2/3 Signaling Attenuation and Connexin 43-Dependent Phenotype Destabilization. Int J Mol Sci. 2018 Aug 29;19(9):2571. pii: E2571. doi: 10.3390/ijms19092571.
  21. Borowczyk-Michalowska J, Zimolag E, Konieczny P, Chrapusta A, Madeja Z, Drukala J. Stage Specific Embryonic Antigen-4 (SSEA-4) as a distinguishing marker between eccrine and apocrine origin of ducts of sweat glands. J Invest Dermatol. 2017; 137(11):2437-2440. doi: 10.1016/j.jid.2017.07.003.
  22. Borowczyk-Michalowska J, Zimolag E, Waligorska A, Dobrucki J, Madeja Z, Drukala J. Stage-specific embryonic antigen-4 as a novel marker of ductal cells of human eccrine sweat glands. Br J Dermatol. 2017; 176(6): 1541-1548. DOI: 10.1111/bjd.15154.
  23. Paw M, Borek I, Wnuk D, Ryszawy D, Piwowarczyk K, Kmiotek K, Wójcik-Pszczoła KA, Pierzchalska M, Madeja Z, Sanak M, Błyszczuk P, Michalik M, Czyż J. Connexin43 Controls the Myofibroblastic Differentiation of Bronchial Fibroblasts from Patients with Asthma. Am J Respir Cell Mol Biol. 2017 Jul;57(1):100-110.
  24. Sroka J, Krecioch I, Zimolag E, Lasota S, Rak M, Kedracka-Krok S, Borowicz P, Gajek M, Madeja Z. Lamellipodia and membrane blebs drive efficient electrotactic migration of rat Walker carcinosarcoma cells WC 256. PLoS One. 2016;11(2):e0149133.
  25. Piwowarczyk K, Wybieralska E, Baran J, Borowczyk J, Rybak P, Kosińska M, Włodarczyk AJ, Michalik M, Siedlar M, Madeja Z, Dobrucki J, Reiss K, Czyż J. Fenofibrate enhances barrier function of endothelial continuum within the metastatic niche of prostate cancer cells. Expert Opin Ther Targets. 2015;19(2):163-76.  
  26. Kozdęba M, Borowczyk J, Zimoląg E, Wasylewski M, Dziga D, Madeja Z, Drukala J. Microcystin-LR affects properties of human epidermal skin cells crucial for regenerative processes. Toxicon. 2014;80:38-46.
  27. Ryszawy D, Sarna M, Rak M, Szpak K, Kedracka-Krok S, Michalik M, Siedlar M, Zuba-Surma E, Burda K, Korohoda W, Madeja Z, Czyż J. (2014). Functional links between Snail-1 and Cx43 account for the recruitment of Cx43-positive cells into the invasive front of prostate cancer. Carcinogenesis, 35(9):1920-30. https://doi.org/10.1093/carcin/bgu033
  28. Sroka J, Antosik A, Czyz J, Nalvarte I, Olsson JM, Spyrou G, Madeja Z. Overexpression of thioredoxin reductase 1 inhibits migration of HEK-293 cells. Biol Cell. 2007;99(12):677-687

  • Use of stem cells and progenitor cells in regenerative medicine (http://www.stemcells-project.eu)
  • Role of stem cell derived extracellular vesicles (native and genetically modified) in tissue regeneration
  • Optimization of biocompatible scaffolds combining graphene and defined stem cell populations for tissue regeneration
  • Interaction between tumor cells and normal tissue: morphology, motility and cell-cell interaction between tumor cells and normal cells
  • Modifying agents of cytoskeletal organization normal and neoplastic cells
  • Mechanisms of directional cell movement. Elektrotaxis 
  • Intercellular communication through gap junctions
  • Mechanisms of cancer invasiveness and drug-resistance
  • Cancer microevolution
  • Intercellular communication through gap junctions
  • Mechanisms of cancer progression
  • Electrochemical methods in cell biology: cell separation, elec troperforation and electrofusion
  • The use of human cells cultured in vitro for transplantology
  • iPSC- and MSC- derived extracellular vesicles as a promissing tool in in tissue regeneration
  • Impact of human extracellular vesicles derived from genetically modified stem cells on angigenic and cardiomyogenic potential of cardiac cells
  • Optimization of application of innovative biocompatible scaffolds and stem cells in tissue regeneration
  • Molecular mechanisms of stem cell- and EV- based pro-regenerative activity in tissue repair – focus on cardiovascular and civilization diseases
  • Impact of oxygen concentration on the activity of DNA repair pathways in pluripotent stem cells
  • Influence of oxygen concentration on the regenerative potential of stem cells and their derivatives

Basic knowledge on cell biology and molecular biology techniques – cell cultures and microscopy