Skip to main content

Web Content Display Web Content Display

Web Content Display Web Content Display

Department of Molecular Biophysics



Prof. dr hab. Artur Osyczka
room: A027 (4.01.26), phone: +48 12 664 63 48, e-mail:


Prof. dr hab. Wojciech Froncisz, profesor emeritus
room: B023 (3.01.30), phone: +48 12 664 64 45, e-mail:

Prof. dr hab. Bernard Korzeniewski
room: B027 (3.01.35), phone: +48 12 664 63 73, e-mail:

Dr hab. Ryszard J. Gurbiel
room: B003 (3.01.42), phone: +48 12 664 65 13, e-mail:

Dr hab. ​Marcin Sarewicz
room: A026 (4.01.25), phone: +48 12 664 65 90, e-mail:

Dr Robert Ekiert
room: A026 (4.01.25), phone: +48 12 664 65 90, e-mail:

DrMałgorzata Dutka
room: C042 (2.01.31), phone: +48 12 664 65 91, e-mail:

Dr Arkadiusz Borek
room: B015 (3.01.6), phone: +48 12 664 64 21, e-mail:

Dr Agnieszka Broniec
room:  A024 (4.01.23), phone: +48 12 664 65 42

Dr Łukasz Bujnowicz
room: A026 (4.01.25), phone: +48 12 664 65 90, e-mail:

Dr. Patryk Kuleta
room: A026 (4.01.25), phone: +48 12 664 65 90, e-mail:

Dr Rafał Pietras
room: A024 (4.01.23), phone: +48 12 664 65 42, e-mail:

Dr Sebastian Pitscher
room: A024 (4.01.23), phone: +48 12 664 65 42, e-mail:

Dr Małgorzata Wolska
room: A020 (4.01.6), phone: +48 12 664 64 21, e-mail:
Mgr Katarzyna Szkaradek-Tokarz
room: A023 (4.01.22), phone: +48 12 664 66 18, e-mail:

Mgr inż. Jerzy Kozioł
room: A025 (4.01.24), phone: +48 12 664 65 22, e-mail:


PhD Students

Katarzyna Lorencik, room: B015 (3.01.6), phone: +48 12 664 64 21

Bohun Mielecki, room: A020 (4.01.6), phone: 12 664 64 21

Jakub Pagacz, room: B015 (3.01.6), phone: +48 12 664 64 21

Mateusz Szwalec, room: A024 (4.01.23), phone: +48 12 664 65 42

Research topics

  • Natural engineering of biological energy conversion systems, including respiratory and photosynthetic chains, and their role in maintaining cell homeostasis.
  • Mechanisms of electron and proton transfers in redox proteins.
  • Mechanisms of generation and neutralization of reactive oxygen species in bioenergetic systems.
  • Molecular architecture and physico-chemical properties of metalloproteins and catalytic redox sites in bioenergetic membranes.
  • Application of EPR spectroscopy and MRI imaging for studying the structure and the dynamics of biological systems.
  • Computer modelling of bioenergetic pathways in the animal cell.
  • Regulation of oxidative phosphorylation in the heart and skeletal muscle during increased exercise.
  • Influence of low oxygen concentration and inborn enzyme deficiencies on oxidative phosphorylation.

Methods and specialized equipment


  • optical spectroscopy (including time-resolved spectroscopy)
  • cw and pulse EPR spectroscopy
  • genetic modification of bacteria (site directed mutagenesis)


  • Spectrofluorimeter Perkin Elmer LS55
  • Elexsys E-580-10/12 EPR spectrometer operating at X-band (9.5 GHz) and Q-band (35 GHz). The system allows for cw and pulse experiments at temperatures from hundreds of kelvins down to liquid helium temperatures. At low temperatur es one can apply the freeze-quench metod
  • Home built EPR spectrometers operating at L-band (1.1 GHz) and X-band (9.5 GHz) in cw and Saturation Recovery mode
  • Double wavelength time-resolved spectrophotometer
  • BioLogic spectrophotometer allowing for stopped-flow measurements and "diode array" spectrophotometer
  • UV/Vis spectrophotometers: Shimadzu, Analytik-Jena, Hitachi
  • Laboratories for biochemical and genetic work fully equipped for bacterial cultures, site-directed mutagenesis and membrane and protein isolation

Current projects

  1. Artur Osyczka and Marcin Sarewicz: Poszukiwanie molekularnych czynników odpowiedzialnych za regulację przepływu elektronów w układach fotosyntetycznych na poziomie cytochromu b6f z użyciem metod spektroskopii optycznej oraz rezonansu paramagnetycznego. (2018-2021), TEAM, Fundation for Polish Science (FNP).
  2. Arkadiusz Borek: The molecular effects of human mitochondrial cytochrome b mutations  studied in bacterial Rhodobacter capsulatus cytochrome b model protein. (2017-2021), OPUS 11, National Science Centre (NCN).
  3. Artur Osyczka: Molekularne podstawy regulacji przepływu elektronów między błonową pulą ubichinolu a pozabłonową pulą cytochromu c. Czy mitochondrialny kompleks III podlega przejściu między stanem „szybkim" a „wolnym". (2016-2021), MAESTRO 7, National Science Centre (NCN).

Selected publications

  1. Sarewicz, M., Bujnowicz, Ł., Bhaduri, S., Singh, S.K., Cramer, W.A., Osyczka, A. (2017) Metastable radical state, nonreactive with oxygen, is inherent to catalysis by respiratory and photosynthetic cytochromes bc1/b6f. Proc. Nat. Acad. Sci. USA 114, 1323-1328
  2. Pintscher, S., Kuleta, P., Cieluch, E., Borek, A., Sarewicz, M., Osyczka, A. (2016) Tuning of hemes b equilibrium redox potential is not required for cross-membrane electron transfer. J. Biol. Chem. 291, 6872-6881.
  3. Borek, A., Kuleta, P., Ekiert, R., Pietras, R., Sarewicz, M., Osyczka, A. (2015) Mitochondrial disease-related mutation G167P in cytochrome b of Rhodobacter capsulatus cytochrome bc1 (S151P in human) affects the equilibrium distribution of [2Fe-2S] cluster and generation of superoxide. J. Biol. Chem. 290, 23781-23792.
  4. Sarewicz, M., Osyczka, A. (2015) Electronic connection between the quinone and cytochrome c redox pools and its role in regulation of mitochondrial electron transport and redox signaling. Physiol. Rev. 95, 219-243.
  5. Beldzik, E., Domagalik, A., Froncisz, W., Marek, T. (2015) Dissociating EEG sources linked to stimulus and response evaluation in numerical Stroop task using Independent Component Analysis. Clinical Neurophysiology 126, 914-926.  
  6. Korzeniewski B (2015) Effect of OXPHOS complex deficiencies and ESA dysfunction in working intact skeletal muscle: implications for mitochondrial myopathies. Biochim Biophys Acta (Bioenergetics) 1847, 1310-1319.
  7. Korzeniewski B, Rossiter HB (2015) Each-step activation of oxidative phosphorylation is necessary to explain muscle metabolic kinetic responses to exercise and recovery in humans. J Physiol 593, 5255-5268.
  8. Sarewicz, M., Dutka, M., Pintscher, S., Osyczka, A. (2013) Triplet state of the semiquinone-Rieske cluster as an intermediate of electronic bifurcation catalyzed by cytochrome bc1. Biochemistry 52, 6388-6395.
  9. Świerczek, M., Cieluch, E., Sarewicz, M., Borek, A., Moser, C. C., Dutton, P. L., Osyczka, A. (2010) An electronic bus bar lies in the core of cytochrome bc1. Science 329, 451-454.
  10. Sarewicz, M., Borek, A., Daldal, F., Froncisz, W., Osyczka, A. (2008) Demonstration of short-lived complexes of cytochrome c with cytochrome bc1 by EPR spectroscopy. Implications for the mechanism of interprotein electron transfer. J. Biol. Chem. 283, 14826-24836.

Batchelor/master thesis topics

  • Spectroscopic analysis of electron and proton transfers in redox-active metaloproteins
  • Investigating molecular basis of mitochondrial mutations using photosynthetic bacterial model system
  • Investigating mechanisms of generation of reactive oxygen species by components of photosynthetic/respiratory electron transport chains
  • Investigating structure-function relationships in redox-active proteins of photosynthetic/respiratory electron transport chains
  • Function, structure and dynamics of redox proteins (oxidoreductases, cytochromes, iron-sulfur proteins) investigated at molecular level using advanced spectroscopic methods (optical and EPR) and protein engineering (site-directed mutagenesis, protein labeling).
  • Reactive oxygen species in bioenergetic systems, molecular basis of pathogenic and adaptive mutations in mitochondria
  • Computer modeling of metabolic pathways
  • Theoretical studying of metabolic pathways

Requirements for candidates

  • High motivation to conduct research and interest in the subject related to research topics of the Department
  • Good knowledge of biochemistry, piophysics and molecular biology
  • Fluent English
  • Computer skills