Skip to main content

Web Content Display Web Content Display

Skip banner

Web Content Display Web Content Display

Department of Molecular Biophysics

Prof. dr hab. Artur Osyczka
room: A027 (4.01.26), phone: +48 12 664 63 48, e-mail:

Dr hab. Marcin Sarewicz
room: A025 (4.01.24), phone: +48 12 664 65 22, e-mail:

Dr Małgorzata Dutka
room: C042 (2.01.31), phone: +48 12 664 65 91, e-mail:

Dr Łukasz Bujnowicz
room: A026 (4.01.25), phone: +48 12 664 65 90, e-mail:

Dr Robert Ekiert
room: A024 (4.01.23), phone: +48 12 664 65 42, e-mail:

Dr Patryk Kuleta
room: A026 (4.01.25), phone: +48 12 664 65 90, e-mail:

Dr Rafał Pietras
room: A024 (4.01.23), phone: +48 12 664 65 42, e-mail:

Dr Anna Wójcik-Augustyn 
room: A026 (4.01.25), phone: +48 12 664 65 90, e-mail:

Mgr inż. Jerzy Kozioł
room: A023 (4.01.22), phone: +48 12 664 66 18, e-mail:

Mgr Katarzyna Szkaradek-Tokarz
room: A023 (4.01.22), phone: +48 12 664 66 18, e-mail:

Katarzyna Lorencik, room: A022 (4.01.21) 

Bohun Mielecki, room: A022 (4.01.21) 

Jakub Pagacz, room: A022 (4.01.21) 

Mateusz Szwalec, room: A024 (4.01.23), phone: +48 12 664 65 42

Prof. dr hab. Wojciech Froncisz
room: B023 (3.01.30), phone: +48 12 664 64 45, e-mail:

Dr hab. Ryszard J. Gurbiel
room: B003 (3.01.42), phone: +48 12 664 65 13, e-mail:

Molecular Bioenergetics
  • Natural engineering of biological energy conversion systems (bioenergetic systems), including respiratory and photosynthetic chains of eukaryotic and prokaryotic organisms
  • Mechanisms of catalytic reactions, electron and proton transfers in multi-cofactor redox chains
  • Mechanisms of generation and neutralization of reactive oxygen species 
  • Molecular architecture and physico-chemical properties of metalloproteins and catalytic redox sites
  • Dynamics of protein-protein interactions 
  • Molecular effects of mitochondrial adaptive and disease-related mutations
Development of spectroscopic approaches
  • Development of new techniques, hardware and software, for application of optical spectroscopy and electron paramagnetic resonance (EPR) in studying structure and dynamics of biological systems

  • optical spectroscopy (including time-resolved spectroscopy)
  • EPR spectroscopy (continuous wave and pulse EPR)  
  • genetic and protein engineering 
  • quantum-mechanical calculations
  • molecular dynamics simulations (ab initio and classical) 
  • Bruker Elexsys E-580-10/12 EPR spectrometer operating at X-band (9.5 GHz) and Q-band (35 GHz) for continuous wave (cw) and pulse experiments at temperatures ranging from hundreds of kelvins down to liquid helium temperatures; freeze-quench setup for low temperature measurements 
  • Home-built EPR spectrometers operating at L-band (1.1 GHz) and X-band (9.5 GHz) in cw and Saturation Recovery mode
  • Double wavelength time-resolved spectrophotometer
  • Spectrofluorimeter Perkin Elmer LS55
  • BioLogic spectrophotometer allowing for stopped-flow measurements and "diode array" spectrophotometer
  • UV/VIS spectrophotometers: Shimadzu, Analytik-Jena, Hitachi, DeNovix
  • Fully-equipped laboratories for conducting biochemical and genetic work on bacterial cells, membranes, proteins and reconstituted systems

  1. Artur Osyczka: The thylakoid soluble phosphoprotein 9 (TSP9) as a novel partner of plantcytochrome b6f - exploring dynamics of its interactions and molecularconsequences on photosynthetic energy conversion (2023–2028), OPUS 24, NCN.
  2. Artur Osyczka and Marcin Sarewicz: Searching for molecular interactions that regulate photosynthetic electron flow at the level of cytochrome b6f using optical and paramagnetic resonance spectroscopy. (2018–2022), TEAM, FNP.
  3. Artur Osyczka: Molecular basis of regulation of electron flow between membranous quinone and water-soluble cytochrome. Does mitochondrial complex III switch between "slow" and "fast" state? (2016–2022), MAESTRO 7, NCN.
  4. Artur Osyczka: Consequences of faulty electron transfer induced by asymmetric cytochrome bc1 for mitochondrial respiratory disease and aging. (2011–2016), The Wellcome Trust International Senior Research Fellowship.
  5. Artur Osyczka: Reversible energy coupling in ubiquinol-cytochrome c oxidoreductase: engineering of cofactor chains for radical and short circuit suppression, molecular basis of adaptation and disease. (2006–2012), The Wellcome Trust International Senior Research Fellowship.

  1. Sarewicz, M., Szwalec, M., Pintscher, S., Indyka, P., Rawski, M., Pietras, R., Mielecki, B., Koziej, Ł., Jaciuk, M., Glatt, S., Osyczka, A. (2023) High-resolution cryo-EM structures of plant cytochrome b6f at work. Sci. Adv. 9, eadd9688. 
  2. Szwalec, M., Bujnowicz, Ł., Sarewicz, M., Osyczka, A. (2022) Unexpected heme redox potential values implicate an uphill step in cytochrome b6f. J. Phys. Chem. B., 126, 9771-9780. 
  3. Kuleta P., Lasham J., Sarewicz M., Ekiert I., Sharma V., Ekiert R., Osyczka A., (2021) Hydrogen bonding rearrangement by a mitochondrial disease mutation in cytochrome bc1 perturbs heme bH redox potential and spin state. Proc. Nat. Acad. Sci. USA 118, e2026169118.
  4. Sarewicz M., Pintscher S., Pietras R., Borek A., Bujnowicz Ł., Hanke G., Cramer W. A., Finazzi G., Osyczka A., (2021). Catalytic reactions and energy conservation in the cytochrome bc1 and b6f complexes of energy-transducing membranes, Chemical Reviews 121: 2020-2108.
  5. Pintscher, S., Wójcik-Augustyn, A., Sarewicz, M., Osyczka, A. (2020). Charge polarization imposed by the binding site facilitates enzymatic redox reactions of quinone. BBA-Bioenergetics 1861: 148216.
  6. Purhonen J, Grigorjev V, Ekiert R, Aho N, Rajendran J, Pietras R, Truvé K, Wikström M, Sharma V, Osyczka A, Fellman V, Kallijärvi J. (2020). A spontaneous mitonuclear epistasis converging on Rieske Fe-S protein exacerbates complex III deficiency in mice. Nature Communications  11: 322.
  7. Sarewicz, M., Bujnowicz, Ł., Bhaduri, S., Singh, S.K., Cramer, W.A., Osyczka, A. (2017) Metastable radical state, nonreactive with oxygen, is inherent to catalysis by respiratory and photosynthetic cytochromes bc1/b6f. Proc. Nat. Acad. Sci. USA 114, 1323-1328.
  8. Pintscher, S., Kuleta, P., Cieluch, E., Borek, A., Sarewicz, M., Osyczka, A. (2016) Tuning of hemes b equilibrium redox potential is not required for cross-membrane electron transfer. J. Biol. Chem. 291, 6872-6881.
  9. Sarewicz, M., Osyczka, A. (2015) Electronic connection between the quinone and cytochrome c redox pools and its role in regulation of mitochondrial electron transport and redox signaling. Physiol. Rev. 95, 219-243.
  10. Świerczek, M., Cieluch, E., Sarewicz, M., Borek, A., Moser, C.C., Dutton, P. L., Osyczka, A. (2010). An electronic bus bar lies in the core of cytochrome bc1. Science, 329, 451-454.

  • Function, structure and dynamics of redox proteins (oxidoreductases, cytochromes, iron-sulfur proteins) investigated at molecular level using advanced spectroscopic methods (optical and EPR) and protein engineering (site-directed mutagenesis, protein labeling)
  • Spectroscopic analysis of electron and proton transfers in redox-active metalloproteins
  • Investigating molecular effects of mitochondrial adaptive and disease-related mutations using photosynthetic bacterial model system
  • Investigating mechanisms of generation of reactive oxygen species by components of photosynthetic/respiratory electron transport chains
  • Application of the quantum chemistry methods to study the mechanisms of enzymatic reactions (oxygenase, oxidase, reductase, oxidoreductase, sulfurylase)
  • Modelling of structure of enzymatic complexes

  • Strong motivation to conduct research and high interest in the subjects related to research topics of the Department
  • Good knowledge of biochemistry, biophysics and molecular biology
  • Fluency in spoken and written English
  • Computer skills
  • Teamwork capabilities