Ocena rozprawy doktorskiej mgr Natalii Wolak pt. „Udział witaminy B₁ w odpowiedzi na warunki stresu abiotycznego modelowych organizmów drożdżowych z rodzaju \textit{Saccharomyces oraz Candida}” wykonanej na Wydziale Biochemii, Biofizyki i Biotechnologii, Uniwersytetu Jagiellońskiego pod kierunkiem dr hab. Marii Rąpąży-Kozik

Tiamina (witamina B₁) mimo, że jest znana od ponad 100 lat, nadal cieszy się zainteresowaniem badaczy z zakresu biologii i medycyny. Również aktualnym tematem w dziedzinach związanych z naukami przyrodniczymi, medycznymi, a nawet społecznymi jest szeroko pojmowane zjawisko stresu. W ostatnim czasie, oprócz dobrze poznanej koenzymowej roli tiaminy, dowiadujemy się coraz więcej na temat niekoenzymowego udziału tej witaminy w regulacji metabolizmu komórek, aczkolwiek stosunkowo niewiele wiadomo na temat udziału tiaminy w reakcjach organizmów jednokomórkowych na czynniki stresogenne. Tego właśnie zagadnienia dotyczy przedłożona do oceny rozprawa doktorska. Jako obiekt badań Autorka wybrała mikroorganizmy z rodzajów \textit{Saccharomyces} i \textit{Candida}, łącznie 5 gatunków.

Aby ocenić trafność doboru tematu i obiektu badań, najlepiej sięgnąć do danych dotyczących publikacji nawiązujących do omawianych zagadnień. Przykładowo, przeszukując bazę Web of Science zapytaniem „thiamine”, uzyskujemy ponad 12000 rekordów, podczas gdy prac dotyczących tiaminy i stresu znajdujemy niewiele ponad 60. Jeszcze mniej wiadomo na temat udziału tiaminy w stresie u drożdży. W tym przypadku w bazie Web of Science można odnaleźć zaledwie kilka pozycji, spośród których aż trzy są współautorstwa mgr Natalii Wolak. Wyniki jednej z tych prac częściowo wchodzą w skład ocenianej rozprawy doktorskiej. Przytoczone powyżej dane świadczą bezспорne o tym, że zagadnienia poruszane w rozprawie mieszczą się w aktualnych trendach fachowej literatury...
światowej. Wybór tematu i obiektu badań są trafne, a uzyskane wyniki znacząco wzbogaczają wiedzę w zakresie roli tiaminy w stresie.

Przedstawiona do oceny praca ma strukturę klasyczną rozprawy doktorskiej spisanej na 145 stronach maszynopisu. Dzieło zostało bardzo starannie i estetycznie zredagowane. Zasadniczą treść rozprawy poprzedza wykaz stosowanych skrótów i streszczenie (po polsku i po angielsku). Tekst zamyka suplement, w którym autorka przedstawia sekwencje starterów do ponad 50 genów, których ekspresję analizowała metodą Real-time PCR. Podział pracy na podrozdziały jest logiczny i nie budzi żadnych zastrzeżeń. Praca zawiera 47 kolejno ponumerowanych rysunków, z których większość (36) to diagramy słupkowe i wykresy obrazujące uzyskane wyniki, 6 tabel, z których 5 bez numerów stanowi integralną część rozdziału „Materiał i metody”, jedna (Tabela 1) ilustruje analizę regionów promotorowych genów związanych z metabolizmem tiaminy. Spis literatury zawiera ponad 160 pozycji, wśród których dominują eksperymentalne prace opublikowane w anglojęzycznych periodykach naukowych. Cytowana literatura zawiera zarówno klasyczne, starsze dzieła, jak i opisy najnowszych osiągnięć naukowych związanych z tematyką pracy. Około 30% cytowanej literatury to pozycje opublikowane w ostatnich 5 latach, co świadczy o aktualnej wiedzy Autorki w zakresie omawianych zagadnień.

Zwięzłe wprowadzenie dobrze ukierunkowuje czytelnika na cel pracy ugruntowując zarazem zasadność podjętych badań. We wstępie Autorka przedstawia udział tiaminy i jej fosforanowych pochodnych w podstawowym metabolizmie komórek, wskazując także fizjologiczne i medyczne znaczenie tej witaminy. Spośród dużej grupy enzymów zależnych od difosforanu tiaminy autorka koncentruje się na najistotniejszych, powszechnie występujących u wszystkich organizmów żywnych, takich jak transketolaza i kompleksy dehydrogenaz 2-oksokwasów, jak też specyficznej dla organizmów prowadzących fermentację alkoholową dekarboksylację pirogronianowej. Można by bardziej wyeksponować udział szlaku pentozofosforanowego (i transketolazy) w utrzymywaniu równowagi oksydoredukcyjnej komórek oraz zagadnienie roli trisfosforanu tiaminy w odpowiedzi na niekorzystne warunki środowiska.

Opisując rolę enzymów zależnych od difosforanu tiaminy, Autorka używa terminu „dehydrogenaza α-oksokwasów”, poprawniej byłoby pisać o dehydrogenazie 2-oxo- ewentualnie α-ketokwasów. Należy też wskazać, że dehydrogenaza 2-oksokwasów o rozgałęzionych łańcuchach w fizjologicznych warunkach uczestniczy bardziej w katabolizmie aminokwasów niż w ich syntezie – jak pisze Doktorantka (str. 22). We wstępie, oprócz

2
koenzymowej roli tiaminy, Autorka wskazuje również odkrycia związane z niekoenzymową rolą tej witaminy. Dodatkowo w bardzo przystępny sposób opisuje proces biosyntezy i dystrybucji tiaminy w komórkach, wskazując najnowsze odkrycia dotyczące tych zagadnień.

W drugiej części wstępu Autorka wprowadza czytelnika w zagadnienie stresu podając główne czynniki tego zjawiska i omawia jego mechanizmy w odniesieniu do obiektu badań. Wskazuje również podobieństwa i różnice w odpowiedzi na niekorzystne czynniki u badanych grzybów z rodzaju Saccharomyces i Candida. Należy zwrócić uwagę, że Saccharomycotina nie jest rodzajem – jak pisze Autorka w podpisie do rys. 4 – ale podtypem, w którym znajduje się rodzina Saccharomycetaceae grupująca 14 rodzajów, z których 2 to Saccharomyces i Candida. Grzyby z rodzaju Candida powszechnie kolonizują nasze organizmy (np. przewód pokarmowy) nie powodując chorób. Do ujawnienia klinicznych objawów zakażenia dochodzi w specyficznych warunkach, gdy obniża się poziom odporności. Czy zatem nie lepiej byłoby używać w stosunku do nich określenia „grzyby oportunistyczne”, jak czynią to mikrobiolodzy kliniczni, w zamian terminu „patogeny”, jak pisze Autorka?

Zastanawia mnie kwalifikacja stresu oksydacyjnego, jako zjawiska typowo abiotycznego. Wiadomo, że generowanie reaktywnych form tlenu jest naturalną konsekwencją fosforylacji oksydacyjnej w mitochondriach. Wolne rodniki mogą również powstawać w peroksosomach, a niektóre komórki naszego systemu obronnego wykorzystują tzw. wybuch tlenu do zwalczania infekcji. Oczywiście wolne rodniki mogą powstawać również bez udziału organizmów żywych (np. w skutek promieniowania), tym nie mniej uważam, że oddziaływania wolnorodnikowe można równie dobrze zaliczyć do czynników biotycznych, szczególnie w przypadku Candida.

Podsumowując uważam, że wstęp ocenianej rozprawy doktorskiej po drobnych Korektach i uzupełnieniach mógłby być opublikowany jako praca przeglądowa.

Celem rozprawy jest weryfikacja hipotezy protekcyjnego działania tiaminy w stresie spowodowanym różnymi czynnikami, ze szczególnym uwzględnieniem reaktywnych form tlenu u grzybów Saccharomyces i Candida, jak też ocena zależności tego zjawiska od kofaktorowej i nickofaktorowej funkcji tiaminy oraz identyfikacja mechanizmów zaangażowanych w jego regulację. Cel pracy został precyzyjnie sformułowany i prawidłowo uzasadniony. Szczególnie interesująca jest konfrontacja udziału tiaminy w stresie u niepatogennych Saccharomyces cerevisiae i oportunistycznych gatunków z rodzaju Candida.
Metodyka pracy jest adekwatna do postawionego celu, a opis zastosowanych metod jest precyzyjny i pozwala na powtórzenie badań. Na uwagę zasługuje szeroki zakres wykonanych analiz. Autorka wykorzystała klasyczne metody wyznaczania krzywych wzrostu grzybów, badania aktywności czterech głównych enzymów zależnych od tiaminy, określiła stężenie tiaminy i jej difosforanu, poziom wolnych rodników, stan utlenienia białek i zawartości glicerydu w komórkach. Wykorzystała również metody biologii molekularnej do analizy ekspresji genów białek zależnych od difosforanu tiaminy, zaangażowanych w jej syntezę i transport jak też regulujących zjawisko stresu w komórkach. Doktorantka postużyła się również bioinformatyczną analizą możliwości oddziaływania czynników transkrypcyjnych z regionami promotorowymi genów związanych z metabolizmem tiaminy. Na szczególną uwagę zasługuje fakt, że autorka nie poprzestała na analizach bioinformatycznych, ale ich wyniki zweryfikowała w eksperymentach z mutantami drożdży wykorzystując metody biologii molekularnej, co pozwoliło na bardziej precyzyjne określenie genów zaangażowanych w protecyjne działanie tiaminy.

Zastosowany sposób przeliczenia wyników i podania ich w postaci odpowiednich stosunków pomaga w zobrazowaniu opisywanych zjawisk. Mankamentem metodyki jest brak bardziej szczegółowej analizy statystycznej uzyskanych danych. Zastosowanie testów statystycznych do oceny istotności obserwowanych różnic mogłoby znacząco ułatwić analizę wyników. Należałoby również zdefiniować słupki błędu prezentowane na wykresach i diagramach słupkowych. W przypadku badania aktywności kompleksów dehydrogenaz 2-oksokwasów można by pokusić się o oznaczenia w preparacie mitochondrialnym. Wpływ lokowy to znacząco na precyzję pomiarów aktywności zwłaszcza kompleksu dehydrogenazy pirogronianowej. Użycie terminu „ekstrakt drożdżowy” w stosunku do homogenatu komórek wprowadzanego do mieszania reakcyjnych może być mylące dla czytelnika – z reguły mianem ekstrakt drożdżowy określa się popularny składnik stosowany do przygotowania pożywek. Przy przeliczeniu wyników analizy Real-time PCR można by wykorzystać metodę Pfaffa dającą możliwość korekt wyniku o wskaźnik wydajności reakcji, co mogłoby poprawić precyzję wyniku. Uważam, że cennym uzupełnieniem rozprawy może być porównanie przeżywalności komórek w warunkach kontrolnych (bez egzogennej tiaminy) i z dodatkiem tiaminy w konfrontacji z wynikami w podobnych warunkach, ale uwzględniając badane czynniki stresogenne. Te drobne uwagi dotyczące części metodycznej nie ujmują wartości pracy, mogą natomiast pomóc podczas przygotowywania kolejnych publikacji.
Kolejność eksperymentów została zaplanowana prawidłowo, opis wyników jest konkretny, a dyskusja jest uporządkowana, prowadzona w taki sposób, by czytelnik po lekturze wyników był zorientowany w aktualnej literaturze przedmiotu, a jednocześnie dostrzegał osiągnięcia Doktorantki na tym tle. Na wstępie Autorka analizuje wpływ obecności tiaminy w pożywie na jej ilość w komórkach, ekspresję genów zaangażowanych w biosyntezę, dystrybucję i aktywność enzymów zależnych od difosforanu tiaminy, co jest istotne dla interpretacji wyników badań nad stresem w późniejszej części pracy. Spośród wszystkich zastosowanych czynników najwyższe wyhamowanie wzrostu zaobserwowano pod wpływem nadtlenku wodoru, co potwierdza efekty opisywane wcześniej w literaturze. Natomiast drożdże na pożywie z tiaminą wykazaly wyraźnie wyższe tempo wzrostu w warunkach stresu w porównaniu z komórkami na pożywie bez tiaminy. Wyniki te wraz z innymi danymi prezentowanymi w pracy świadczą bezspornie o protekcyjnym działaniu tiaminy. Doktorantka uzyskała również bardzo ciekawe dane rzucające nowe światło na rolę tiaminy w odpowiedzi mikroorganizmów na niekorzystne czynniki. Wykazała, że w pożywie z dodatkiem tiaminy zachodzi obniżenie ekspresji genów związanych ze stresem (katalazy, dehydrogenazy 3-fosfoglicerolowej, dysmutazy ponadtlenkowej i peroksydazy cytochromu C), co potwierdza protekcyjną rolę tiaminy, być może niezwiązana z funkcją koenzymową. Odwrotny efekt odnotowano w przypadku białek Hsp, gdzie dodatek tiaminy do pożywki powodował niewielki wzrost ekspresji genów kodujących te białka.

Znaczącym osiągnięciem pracy jest szereg dobrze zaplanowanych doświadczeń z wykorzystaniem mutantów drożdży wskazujących, że wolna tiamina działa protekcyjnie w warunkach narażenia komórki na działanie reaktywnych form tlenu. Autorka potwierdziła również udział białka Hog1 uczestniczącego w odpowiedzi na wszystkie badane czynniki oraz białka Yap1 zaangażowanego głównie w protekcyjnym działaniu tiaminy wobec stresu oksydacyjnego. Autorka wytypowała też 3 czynniki transkrypcyjne (Sbi5, Skn7, Sko1) spośród 15 wybranych wstępnie, które mogą być zaangażowane w protekcyjne działanie tiaminy w testowanych warunkach. Odkrycia te w znaczący sposób przybliżają rozszyfrowanie molekularnych mechanizmów ochronnego działania tiaminy, co stanowi dużą wartość poznawczą pracy.

U Candida Autorka wykazała podwyższoną ekspresję pirofosfokinazy tiaminy i transketolazy w odróżnieniu od drożdży. Ponadto Candida w odróżnieniu od Saccharomyces nie wykazywały obniżenia poziomu ekspresji enzymów antyoksydacyjnych w warunkach dostępności tiaminy. Być może u gatunków silniej narażonych na kontakt z reaktywnymi
formami tlenu protekcyjne działanie wolnej tiaminy jest mniej efektywne, a wagi nabiera jej koenzymowa rola. Wyniki te wskazują na pewne przystosowania oportunistów z rodzaju *Candida* do wywoływania infekcji. Nasuwa się pytanie, czy Autorka dostrzega możliwości wykorzystania swoich wyników w praktyce medycznej?

Podsumowując ocenę rozprawy doktorskiej Pani mgr Natalii Wolak stwierdzam, że zawarte w recenzji uwagi mają na celu sprowokowanie dyskusji i wskazanie możliwości wzbogacenia rozprawy. Uzyskane wyniki mają niewątpliwy wkład w rozszerzenie wiedzy na temat udziału tiaminy w stresie. Z pełnym przekonaniem stwierdzam, że przedmiotowe opracowanie spełnia wszystkie wymogi ustawowe stawiane rozprawom doktorskim. W związku z powyższym wniosku o dopuszczenie mgr Natalii Wolak do dalszych etapów przewodu doktorskiego. Jednocześnie biorąc pod uwagę wysoką wartość naukową rozprawy, składam wniosek o jej wyróżnienie zgodnie z zasadami przyjętymi przez Radę Wydziału Biochemii, Biofizyki i Biotechnologii, Uniwersytetu Jagiellońskiego.

[Signature]

dr hab. Adam Tylicki