Field of study Bioinformatics Specialty -	Education cycle 2023/2024 Subject code
Department Faculty of Biochemistry, Biophysics and BiotechnologyStudy level First cycleStudy form Full-time degree programEducation profile General academicMandatory No, optional	Lecture languages English Subject related to scientific research Yes Disciplines Biological science ISCED classification 0588 Interdisciplinary programmes involving broad field 05 USOS code
Subject coordinator	Guillem Ylla
Lecturer	Guillem Ylla

Advanced Toolkit for Bioinformatics Research

Period	Examination Graded credit	ECT points
Summer semester	Activities and hours Lectures: 15 Seminars: 15	3.0

Goals

C1	This course will provide the students with advanced tools for performing high-quality
	and reproducible research in the field of Bioinformatics. It will cover the different

aspects of bioinformatics research including experimental design, technical skills (in Bash, Python, and R), keeping track of the analysis (git and notebooks), preparing figures for articles, and writing bioinformatics manuscripts.

Subject's learning outcomes

Code	Outcomes in terms of	Effects	Examination methods		
Knowl	Knowledge - Student knows and understands:				
W1	The student will know and understand all the steps involved in performing scientific research in the field of bioinformatics.	BIN_K1_W06, BIN_K1_W09, BIN_K1_W10	report, passing test		
Skills ·	Students can get:		I		
U1	Students will be able to perform good experimental designs in the field of bioinformatics, including NGS experiments.	BIN_K1_U01, BIN_K1_U07	credit with grade, report, passing test		
U2	Students will have the necessary skills in Bash, Python, R, and SQL to perform common research tasks in bioinformatics. This includes connecting to remote servers (ssh), accessing databases through APIs, and managing the data in SQL.	BIN_K1_U01, BIN_K1_U03, BIN_K1_U05, BIN_K1_U06,	credit with grade, report, passing test		
U3	Students will be able to perform reproducible research in bioinformatics using programming notebooks, git, and Github.	BIN_K1_U01, BIN_K1_U14	credit with grade, report, passing test		
U4	Students will be able to identify the most appropriate type of plot depending on the data and message to convey. The students will be able to create high- quality plots using R and ggplot2.	BIN_K1_U01, BIN_K1_U05	credit with grade, report, passing test		
U5	Students will know how to write a scientific article in bioinformatics in English. This will include knowing how to write clearly, how to use reference managers, and how to use Markdown and Latex for scientific reports.	BIN_K1_U05, BIN_K1_U11	credit with grade, report, passing test		
Social	competences – Student is ready to:				
K1	After successfully completing the course, the student should be ready to perform research in bioinformatics	BIN_K1_K01, BIN_K1_K03,	report		

and present their findings in clearly reports with informative data visualizations.	BIN_K1_K04, BIN_K1_K07	

Calculation of ECTS points

Activity form	Activity hours*	
Lecture	15	
Exercises	15	
Preparation for classes	20	
Reading	20	
Preparation for the exam	10	
Writing report	10	
Student workload	Hours	ECTS
	90	3.0
Workload involving teacher	Hours	ECTS
	30	1.0

* hour means 45 minutes

Study content

No.	Course content	Subject's learning outcomes
1.	Introduction to Bioinformatics Research	W1, U1
2.	The Bioinformatics Scientific Ecosystem	U1, U5
3.	Advanced Bioinformatics Skills	U2, U3, U4
4.	Bioinformatics Case Studies	U4, U5
5.	The Lab Notebook for Bioinformatics	U3
6.	Data Visualization	U4, K1
7.	Best Practices in Scientific Writing	U4, U5, K1

8.	Future Directions of Bioinformatics	W1, U1, K1
----	-------------------------------------	------------

Course advanced

Teaching methods

Activities	Examination methods	Credit conditions
Lectures	Report, Passing test , Written assignments	Final grade will be composed of attendance and participation in seminars (5%),
Seminars	Report, Passing test , Written assignments	deliverables (15%), final report (30%), and passing test with multiple-choice and open questions (50%).

Entry requirements

Fluent in spoken and written English. Basic knowledge of R and Python.

Literature

Obligatory

- 1. The Science of Scientific Writing. George Gopen & Judith Swan. <u>https://www.americanscientist.org/blog/the-long-view/the-science-of-scientific-writing</u>
- 2. Defining the scientific method. Nat Methods 6, 237 (2009). https://www.nature.com/articles/nmeth0409-237

Optional

- 1. Science Fictions: How Fraud, Bias, Negligence, and Hype Undermine the Search for Truth. Stuart J. Ritchie
- 2. An Introduction to Statistical Learning: with Applications in R. Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani.
- 3. Knowledge synthesis through scientific visualization. Gael G. McGill https://www.nature.com/articles/s41564-021-01048-x
- 4. Writing Guide; Tips for what to do and what not to do when writing for Harvard Library. <u>https://library.harvard.edu/writing-guide</u>
- 5. Wakefield's article linking MMR vaccine and autism was fraudulent. Fiona Godlee. https://www.bmj.com/content/342/bmj.c7452
- 6. Open access: The true cost of science publishing. Richard Van Noorden https://www.nature.com/articles/495426a

7. Journal citation reports and the definition of a predatory journal: The case of the Multidisciplinary Digital Publishing Institute (MDPI). M Ángeles Oviedo-García. https://academic.oup.com/rev/article/30/3/405/6348133?login=false