Ocena

trozprawy doktorskiej mgr Ewy Podgórskiej "Wybrane aspekty działania witaminy D3 jako czynnika wspomagającego leczenie czerniaków" wykonanej pod kierunkiem prof. dr hab. Krystyny Urbańskiej z Wydziału Biochemii, Biofizyki i Biotechnologii Uniwersytetu Jagiellońskiego w Krakowie oraz Prof. Andrzeja Słomińskiego z Department of Dermatology, University of Birmingham at Alabama, USA.

Podstawa formalna recenzji

Podstawę formalną opracowania recenzji stanowi art. 31 ustawy z dnia 14 marca 2003 r. o stopniach naukowych i tytule naukowym oraz o stopniach i tytule w zakresie sztuki.

Wartość naukowa: oryginalność, aktualność i przydatność podjętego problemu badanego

Badania ostatnich lat wykazały iż witamina D ma znacznie szersze i bardziej donośne znaczenie dla zdrowia oraz przeżycia organizmu niż uprzednio sądzono. Witamina D jest kluczowa nie tylko do zachowania homeostazy wapniowo-fosforanowej, ale także warunkuje poprawne działanie układu immunologicznego, nerwowego oraz endokrynne. Oczywiście było, iż skóra, będąc największym organem, a także miejscem syntezy witaminy D będzie głównym beneficjentem jej dobroczynnego działania. Poprawa jakości bariery naskórkowej wskutek nasilenia różnicowania keratynocytów, działanie przeciwpalne poprzez kaskadę NFkB i aktywację przekaźnictwa sympatycznego oraz działanie antyproliferacyjne to jedynie skrawek
korzyści dla skóry. I właśnie ten ostatni aspekt, niezwykle istotny dla zdrowia, był przedmiotem pracy doktorskjej mgr Ewy Podgórskiej.

Badania z początku XXI wieku wskazują na wyraźny związek pomiędzy poziomem witaminy D w osoczu, ekspresją jej receptoru w tkankach a prevalencją nowotworów. Nie tylko zapadalność ale także stopień złożliwości nowotworu oraz przeżywalność jednostki jest ściśle powiązana z witaminą D. Dotyczy to również nowotworów skóry, w tym najbardziej niebezpiecznej formy – czerniaka, wywodzącego się z melanocytów, komórki syntetyzujących melaninę.

O ile znacznie więcej wiadomo o wpływie różnych form witaminy D na rozwój czerniaka skóry o tyle jedynie znikoma ilość informacji istnieje dla czerniaka błony naczyniowej oka. Pomimo iż oba typy nowotworów wywodzą się z melanocytów to zaobserwowano istotne różnice w ich genotypach, włączając brak mutacji BRAF i NRAS w melanomieocznej co sugeruje nie tylko inną etiopatogenezę, ale także warunkuje rodzą podjętego leczenia. W przypadku melanomy ocznej, jako forma leczenia, oprócz nukleacji galki ocznej stosuje się również promieniowanie jonizujące. Jednak komórki czerniaka są bardziej oporne na energię jonizującą niż inne typy nowotworów gdyż zawarta w nich melanina pochłania część promieniowania i zapobiega jego cytotoxicznemu działaniu. Istnieją przesłanki wskazujące iż witamina D może zwiększać podatność guza na promieniowanie jonizujące, choć mechanizm włączony w tę zależność pozostaje nadal niewyjaśniony. Tę swoistą „radioczułość” nowotworu w obecności lub braku witaminy D doktorantka również badała w przedstawionej pracy.

Z licznych badań in vitro, przedklinicznych na zwierzętach oraz klinicznych wiemy, iż tylko wysokie poziomy witaminy D mają działanie antyproliferacyjne skutecznie hamujące rozwój guza. Tak wysokie poziomy mogą jednocześnie powodować hyperkalcemię oraz odkładanie się depozytów wapnia z następującą niewydolnością kluczowych organów dla życia. To główna przyczyna, dla której naukowcy starają się stworzyć/opracować nowe pochodne lub też prekursory witaminy D pozbawione aktywności hyperkalcemicznej. Zastosowanie takich związków pozwoliłoby na znaczne spowolnienie wzrostu lub też redukcję wielkości guza, zmniejszało współistniejący stan zapalny a przy tym pozbawione było negatywnych skutków ubocznych.

W przedstawionej pracy doktorantka podjęła się próby wykazania wpływu związków z grupy witamin D na przeżywalność a także fenotyp czerniaka błony naczyniowej oka. Temat podjętych badań uważam za bardzo trafny, nowatorski oraz ważny, gdyż nukleacja galki ocznej
jest często jedyną skuteczną formą terapii niepozostającą bez wpływu na samoocenę i samopoczucie chorego. Dlatego też każda nowa forma terapii, nawet adjuwantowej, przyczyniająca się do przedłużenia lub poprawy jakości życia zasługuje na szczegółowe badanie i atencję.

Poprawność redakcyjna oraz wartość merytoryczna rozprawy

Przedstawiona do oceny praca doktorska mgr Ewy Podgórskiej została napisana zgodnie z obowiązującymi wymogami dla rozpraw naukowych i obejmuje ona 114 stron i zawiera 37 figur, 8 rycin, 4 fotografie oraz 2 tabele. Oceniana dysertacja posiada układ typowy dla tego rodzaju opracowań, tj. obejmuje spis treści, wykaz skrótów, cele i założenia, materiały i metody, wyniki, dyskusję, wnioski, bibliografię, streszczenie w języku polskim i angielskim. Praca napisana jest zwięzłym, czytelnym i precyzyjnym językiem, a znajomość terminologii związanej z podjętymi badaniami nie budzi zastrzeżeń. W pracy można co prawda znaleźć kilka niezręcznych sformułowń, bądź nie do końca jasnych zdań, ale należy podkreślić, że ma to charakter incydentalny. Piśmiennictwo obejmuje 183 pozycję, przy czym są to doniesienia w pełni aktualne i nie budzące zastrzeżeń pod względem merytorycznym.

Doktorantka w sposób poprawny i rzetelny przedstawiła współczesne poglądy na powstawanie oraz przebieg czerniaka, tak typu skórnego jak i oczynnego. O ile powszechnie wiadomym jest iż promieniowanie słoneczne odgrywa istotną rolę w melanomogenezie to
przedstawienie roli każdej z długości fal w tym procesie znacznie podwyższyłoby wartość tej pracy. W skrócie, najkrótsze długością fal UVB ma nasilniejsze biologiczne działanie gdyż bezpośrednio uszkadza DNA. Dłuższe falą UVA, pomimo iż ma mniejszą biologicznie siłę, to przenika głębiej i dodatkowo prowadzi do generacji wolnych rodników w skórze. Ponadto, zarówno UVB jak i UVA aktywują skórny ekwiwalent osi podzgórzoowo-przysadkowo-nadnerczowej (ang. HPA axis) skutkujący nasiloną produkcją koryzolu, który powoduje lokalną immunosupresję przyczyniającą się do niewychwycenia zmutowanych melanocytów. Dalej z kolei, frakcja niebieska światła widzialnego (400-450 nm), aktywując receptor dla melanopsyny, zaburza cykl okołodobowy komórki, natomiast promieniowanie podczerwone (700 nm -1 mm), pomimo iż ma niewielki impact biologiczny, to stanowiąc większość ogólnej ilości energii światła słonecznego ma również wpływ na funkcje melanocytów poprzez ochronę ich przed apoptozą. To może spowodować „niewychwycenie” komórki ze zmutowanym DNA i dalszą jej proliferację w kierunku guza. Niewiadomo jednak, czy wpływ poszczególnych frakcji promieniowania słonecznego jest tożsamy dla melanomy ocznej jak to zostało opisane w przypadku czerniaka skóry.

Doktorantka jasno sprecyzowała cele pracy w 4 chronologicznie zaprojektowanych zadaniach mających na celu wykazanie aktywności antyproliferacyjnej nowych pochodnych witaminy D jako leczenia adjuwantowego przy jednoczesnym napromieniowaniu jonizującym; w odniesieniu do klasycznej witaminy D.

W materiałach i metodach doktorantka sprawnie przedstawia typ materiału biologicznego, rodzaj testowanych związków oraz metody pomiarowej. Na szczególną uwagę zasługuje fakt iż doktorantka biegle posługuje się lub ma głębokie zrozumienie wielu różnorodnych technik badawczych. W prezentowanej pracy wykorzystano między innymi hodowle komórkowe 2D i 3D oraz materiał biologiczny pobrany od pacjentów po ekstrakcji glek ocznych. Użyto metodę CRISPR służącą do oceny zmiany genotypu komórkowego, Western Blot do oceny półilościowej oraz Immunohistochemię do lokalizacji in situ ekspresji szukanych białek, oraz inne bardziej powszechne standardowe metody biochemiczne. Warto podkreślić bardzo dobrą znajomość techniki promieniowania protonowego i sposobu oceny przeżywalności komórek w modelach LQ i MTS, których wyniki zostały przeliczone za pomocą skryptów MATLAB.

Wszystkie uzyskane wyniki zostały przeanalizowane z użyciem odpowiednich dla metody typu testów statystycznych. W zależności od typu uzyskanych danych przeprowadzono jedno lub
wieloczynnikową analizę wariancji a uzyskane wartości P mniejsze niż 0.05 uznano za statystycznie istotne.

Jedynie drobne zastrzeżenie, z funkcji recenzenta, dotyczy opisu figur. Uważam iż ich opis znacznie zyskałby na wartości gdyby dodano 1 lub 2 zdania konkluzji uzyskanych wyników. To by znacznie ułatwiło zrozumienie i szybszą interpretację poszczególnych figur.

W wyniku przeprowadzonych badań doktorantka uzyskała ciekawe wyniki wskazujące na istotny wpływ związków z grupy witaminy D na przeżywalność komórek czerniaka. Jednakże stopień pozytywnej odpowiedzi na leczenie związkami witaminy D był bardzo zróżnicowany i uzależniony od typu komórek, rodzaju związku badanego oraz techniki użytej do detekcji zmiany. Brak jednoznacznie konkluzywnych wyników świadczy o wysokiej heterogenności badanych linii czerniaka oraz stopnia ekspresji receptora VDR czy też enzymów degradujących witaminę D. I choć mechanizm uwrażliwienia komórek czerniaka uprzednio traktowanych witaminą D na promieniowanie jonizujące pozostaje nadal niewyjaśniony to wyniki uzyskane z przeprowadzonych badań przyczyniają się do zaprojektowania nowych bardziej celowanych doświadczeń w przyszłości.

Doktorantka w sposób niezwykle dojrzały naukowo dyskutuje uzyskane wyniki z istniejącą literaturą. Cytuje oraz analizuje prace naukowe z ostatnich 15 lat powstałe w wiodących ośrodkach naukowych badających czerniaki błony naczyniowej oka, skóry oraz witaminę D. Doktoranta poprowadziła dyskusję w sposób uporządkowany i umiejętnie zinterpretowała uzyskane wyniki. Nie unika ona zmierzenia się z sytuacjami, w których pojawiają się różnice w tym zakresie, lecz stara się znaleźć dla tych rozbieżności wy tłumaczenie. Rozdział ten, tak jak całość pracy, napisany jest bardzo dobrze dobranym i wyważonym językiem.

Podsumowanie

Przedstawiona do recenzji rozprawa stoi na bardzo dobrym poziomie naukowym. Uzyskane wyniki stanowią cenny wkład do dotychczasowej wiedzy na temat chemio- i radio-terapii czerniaka błony naczyniowej oka i mogą być pomocne w zakresie optymalizacji tej terapii, a ponadto wskazują, że użyte w eksperymentach linie komórkowe mogą być wiarygodnym i przydatnym modelem doświadczalnym. Zastosowana metodyka odpowiada standardom obowiązującym w tego typu badaniach i nie budzi zastrzeżeń. Doktorantka wykazała dobre opanowanie warsztatu badawczego i dużą sprawność w prowadzeniu badań eksperymentalnych.
oraz interpretacji ich wyników. Badania te zostały rzetelnie udokumentowane, a przedstawione wyniki są oryginalne.

Stwierdzam, że rozprawa doktorska mgr Ewy Podgórskiej odpowiada wymogom stawianym dysertacjom na stopień doktora nauk określonym w art. 13 ust. 1 Ustawy o stopniach i tytule naukowym oraz o stopniach i tytule w zakresie sztuki z dnia 14 marca 2003 r. (Dz. U. Nr 65, poz. 595 z późn. zm.). Przedkładam zatem wniosek Wysokiej Radzie Wydziału Biochemii, Biofizyki i Biotechnologii Uniwersytetu Jagiellońskiego w Krakowie o dopuszczenie mgr Ewy Podgórskiej do dalszych etapów przewodu doktorskiego.

Ponadto, biorąc pod uwagę wysokie walory naukowe i praktyczne uzyskanych wyników, zwracam się do Pana Dziekana oraz Wysokiej Rady Wydziału o wyróżnienie rozprawy stosowną nagrodą.

Cezary Skobowiat

dr hab. Cezary Skobowiat